Interactive Non-Malleable Codes
(Full Version)

Nils Fleischhacker'*, Vipul Goyal?>**, Abhishek Jain?***,
Anat Paskin-Cherniavsky?, and Slava Radune*?®

1 Ruhr University Bochum, Bochum, Germany
2 Carnegie Mellon University, Pittsburgh, USA
3 Johns Hopkins University, Baltimore, USA
4 Ariel University, Ariel, Israel
5 The Open University of Israel, Ra’anana, Israel

Abstract. Non-malleable codes (NMC) introduced by Dziembowski et al. [ICS’10] allow one to encode
“passive” data in such a manner that when a codeword is tampered, the original data either remains
completely intact or is essentially destroyed.

In this work, we initiate the study of interactive non-malleable codes (INMCs) that allow for encoding
“active communication” rather than passive data. An INMC allows two parties to engage in an interactive
protocol such that an adversary who is able to tamper with the protocol messages either leaves the
original transcript intact (i.e., the parties are able to reconstruct the original transcript) or the transcript
is completely destroyed and replaced with an unrelated one.

We formalize a tampering model for interactive protocols and put forward the notion of INMCs. Since
constructing INMCs for general adversaries is impossible (as in the case of non-malleable codes), we
construct INMCs for several specific classes of tampering functions. These include bounded state, split
state, and fragmented sliding window tampering functions. We also obtain lower bounds for threshold
tampering functions via a connection to interactive coding. All of our results are unconditional.

1 Introduction

Error correcting codes allow a message m to be encoded into a codeword ¢, such that m can always be
recovered even from a tampered codeword ¢’ if the tampering is done in a specific way. More formally, the
class of tampering functions, F, tolerated by traditional error correction codes are ones that erase or modify
only a constant fraction of the codeword c. However, no guarantees are provided on the output of the decoding
algorithm when the tampering function f ¢ F. A more relaxed notion, error detecting codes, allows the
decoder to also output a special symbol L when m is unrecoverable from ¢’. But here too, the codes can not
tolerate many simple tampering functions such as a constant function.

Non-malleable Codes. The seminal work of Dziembowski, Pietrzak, and Wichs [36] introduced the notion
of non-malleable codes (NMC). Informally, an encoding scheme code := (Enc, Dec) is an NMC against a
class of tampering functions, F, if the following holds: given a tampered codeword ¢’ = f(Enc(m)) for some
f € F, the decoded message m’ = Dec(c’) is either equal to the original message m or the original message
is essentially “destroyed” and m' is completely unrelated to m. In general, NMCs cannot exist for the set
of all tampering functions F,j;. To see this, observe that a tampering function that simply runs the decode
algorithm to retrieve m and then encodes a message related to m trivially defeats the requirement above. In
light of this observation, a rich line of works has dealt with constructing non-malleable codes for different
classes of tampering attacks (see Section 1.2 for a discussion).

* Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972.
** Vipul Goyal is supported in part by NSF grant 1916939, a gift from Ripple, a gift from DoS Networks, a JP Morgan
Faculty Fellowship, and a Cylab seed funding award.
*** Abhishek Jain is supported in part by NSF SaTC grant 1814919 and Darpa Safeware grant W911NF-15-C-0213.

While non-malleable codes have the obvious advantage that one can obtain meaningful guarantees for
a larger class of tampering functions (compared to error correcting codes), they have also found a number
of interesting applications in cryptography. In particular, NMCs have found a number of applications in
tamper-resilient cryptography [36, 60, 40, 41] and they have also been useful in constructing non-malleable
encryption [29]. Recently, non-malleable codes were also used to obtain a round optimal protocol for non-
malleable commitments [53], as well to build non-malleable secret sharing schemes [51, 52].

Interactive Non-Malleable Codes. In this work, we seek to generalize the notion of non-malleable codes.
Regular non-malleable codes can be seen as dealing with “passive” data in that data is encoded and, upon
being tampered, the data either remains completely intact or is essentially destroyed. Now consider the
following scenario. Two parties, each holding their own inputs are interested in running a protocol to perform
some task involving their inputs, such as computing a joint function on them. Now, say an adversary is
able to somehow get access to their communication channel and modify messages being sent in the protocol.
We would like to have a similar guarantee: either the original transcript of the underlying protocol remains
fully recoverable from the encoded communication, or, very informally, the original transcript is essentially
“destroyed” and any transcript possibly recovered is “unrelated” to the interaction that was originally supposed
to take place. Hence, we are concerned with encoding “active communication” rather than passive data.

An interesting special case of the above scenario could also occur in terms of computation being performed
on a piece of hardware. Suppose several different chips on an integrated circuit board are communicating via
interconnecting wires to perform some computation on the secrets stored within them. An adversary could
tamper in some way with the communication going through those wires. We would like to require that either
the computation remains intact, or that the original computation is “destroyed” and whatever computation
takes place is completely unrelated.

Of course, this basic idea raises a number of questions: What does it actually mean for a computation
to be “unrelated” to another computation. How much power can the tampering adversary reasonably be
allowed to have? Are we concerned with the secrecy of inputs in this setting?

In the setting of non-interactive non-malleable codes (INMCs), “unrelated” is easily defined as independent
of the original message. However, in the interactive setting, things are a bit more complicated since there
exists more than one input. Indeed, there are multiple notions of non-malleability that we can envision in the
interactive setting. Below, we discuss possible notions of non-malleability.

Suppose, Alice and Bob are holding inputs x and y respectively and they jointly execute a protocol that
results in a transcript 7 when not tampered with. Now suppose an adversary tampers with the messages sent
over the communication channel and Alice and Bob recover transcripts 71 and 7o, respectively. A possible
notion of non-malleability could then require that either 73 = 7 (i.e., the original transcript remains intact)
or the distribution of 7; should be completely independent of Bob’s input y.

Such a notion would still allow an adversary to simply “cut off” Bob from the communication and
essentially execute the protocol honestly, but with a different input 3’. Clearly, this is not an attack on the
notion described above, since y’ and thereby the resulting transcript 7; is distributed completely independently
of y. Nevertheless, the notion is still not completely satisfying since the output under tampering still depends
on one of the inputs.

We may, thus, consider a strengthening of the above notion, where a party must receive either the correct
transcript 7 or L. This notion is achievable if the tampering function is not strong enough to cut off and
impersonate one of the parties. It is easy to see that this notion is stronger than error detection: whether or
not a party receives | must not depend on the inputs (z,y), i.e. input dependent aborts must be prevented.’

Even this stronger definition may still not be quite as strong as one might hope. It is entirely conceivable
that a tampering function could exist such that the marginal distributions of Alice’ and Bob’s individual
outputs are independent from both inputs, but where the product distribution of the two is not. The final
definition we settle for, is therefore one where we require that both parties receive either the correct transcript
7 or | and the product distribution of the two outputs must be (almost) independent of the inputs.

6 This is similar in spirit to the definition of non-malleable codes where, whether or not the decoder gets L, can also
not depend upon the original message m.

We do not explicitly model any secrecy requirements for the inputs (x,y). We view non-malleability
of codes in the interactive setting as a separate property and as such it should be studied independently.
However, our definitions of encodings work by defining them using simulators relative to an underlying
protocol. This formalization ensures that any security properties such as secrecy of inputs of the underlying
protocol are preserved under the encoding.

Relationship to Non-Malleable Codes. Consider the message transfer functionality where the transcript is
simply the transferred message z. An interactive non-malleable coding protocol for this functionality gives
the following guarantee: Bob either receives z from Alice or a value z’ unrelated to z. It is easy to see that a
one round interactive non-malleable coding protocol for this message transfer functionality is the same as a
non-malleable code (encoding message z) for the same class of tampering functions. Indeed, the question
that we consider in our work can be seen as generalizing non-malleable codes to more complex protocols
potentially involving multiple rounds of interaction and both inputs x and y.

Our notion of INMCs is harder to achieve in one sense since more complex functionalities are involved,
and yet, is easier to achieve in another sense since one is allowed multiple rounds of interaction and the order
of messages introduces a natural limit on the power of an adversary, since she cannot tamper depending on
“future” messages.

Similar to non-malleable codes, INMCs are impossible to achieve for arbitrary tampering functions. Very
roughly, consider the first message of the protocol transcript which contains non-trivial information about
the input x of Alice. The adversary at this point decodes and reconstructs this partial information about the
input z, chooses a related input 2’ consistent with the partial information and simply executes the protocol
honestly with Bob from this point onwards (cutting Alice off completely). A similar argument can also
be made for the other direction. In fact, we even rule out INMCs for a more restricted class of threshold
tampering functions using a very similar argument in Section 4. This suggests that, similar to non-malleable
codes, we must focus on specific function classes for building INMCs.

One seemingly obvious approach of constructing INMCs even for multi-round protocols would be to
directly use non-malleable codes. I.e., encode each message of an underlying protocol independently. The
hope would be that this results in an INMC that allows at least independent tampering of each message
under the same class of tampering functions as the original NMC. However, this naive approach fails to
produce INMCs for any meaningful class of functions.

As a counter example consider the following protocol: Alice has inputs (z,y) and sends these to Bob
in two separate messages. Bob receives the messages and outputs (z,y). With the above approach, = and
y would be encoded separately as Enc(x),Enc(y). Let f be any tampering function, such that decoding
Dec(f(Enc(z)) # x. Such functions exist within the class of tampering functions against which the NMC is
supposed to be secure, unless the NMC is in fact error correcting. A valid tampering function against the
supposed INMC could then tamper with the first message using f and not tamper with the second message
at all. This would result in Bob receiving z # z and y and outputting (z,y). Clearly (z,y) and (z,y) are
related. Therefore, the protocol is not non-malleable. This counter example works even when more complex
constructions such as the NMC against streaming space-bounded tamperings by Ball et al. [11] are used.

An interesting additional hurdle that needs to be overcome when constructing INMCs when compared
to non-malleable codes is inherent leakage. Because messages in the protocol are tampered successively,
a tampering function can use conditional aborts to communicate some information to future tampering
functions. Let F be some class of tampering functions. Say a tampering function f € F looks at message m;
sent in round 7 of the protocol and aborts unless m; is “good” in some sense. In future rounds, even if the
definition of F precludes f from having any knowledge of m;, the tampering function still learns that m;
must have been “good”, since the protocol would have otherwise aborted. We deal with this inherent leakage
by bounding the leakage and using leakage resilient tools.

Relationship to Interactive Coding. Our notion can be seen as inspired by the notion of interactive coding
(IC) [64, 65, 66]. Essentially, INMCs are to non-malleable codes what IC is to error correcting codes. In
interactive coding, we require that the original transcript must remain preserved in face of an adversary
tampering the message over the communication channel. INMCs only require something weaker, namely, that

either the transcript must remain preserved or that the original transcript be destroyed and any possibly
reconstructed transcript be independent of the inputs to the protocol.

An obvious advantage of such a weaker notion is that one could hope to achieve it for a larger class of
tampering functions compared to ICs. Indeed, ICs are achievable only for threshold adversaries, namely,
an adversary which only tampers with a fixed threshold number of bits of the communication (typically a
constant fraction of the entire communication). All guarantees are lost in the case an adversary tampers with
more bits than allowed by this threshold. However, as we discuss later, INMCs are achievable for adversaries
which could potentially tamper with every bit going over the communication channel. For the specific case
of threshold tampering functions, however, we are able to show that lower bounds on the fraction of the
communication that can be tampered with transfer from ICss to INMCs.

1.1 Our Results and Techniques

In this work we initiate the study of INMCs. We formalize the tampering model and put forward a notion
of securityfor INMC. Since achieving INMC for general adversaries is impossible, we turn our attention to
specific classes of tampering functions.

We show both positive and negative results. We first establish a negative result for threshold tampering
functions by showing that INMCs for threshold tampering imply ICs for the same class of tampering functions,
thereby transferring lower bounds from interactive coding to INMCs. We then provide several positive results
for specific classes of tampering functions by constructing general (unconditional) compilers X' that can
encode an arbitrary underlying protocol IT in a non-malleable fashion (for the appropriate class of tampering
functions).

Threshold Tampering Functions. A threshold tampering function is not restricted in its knowledge of the
protocol transcript or in its computational power, but can only modify a fixed fraction (say 1/4) of the bits in
the transcript. For this class, lower bounds are known for the case of interactive coding. Specifically Braverman
and Rao [18] showed that non-adaptive IC can tolerate tampering with at most 1/4 of the transcript, and
Ghaffari, Haeupler, and Sudan [50] showed that an adaptive IC can tolerate tampering with at most 2/7 of
the transcript. When looking for stronger classes of tampering functions, the first natural question to ask is
therefore whether the weaker notion of INMCs might allow us to circumvent these lower bounds. However, it
turns out that this is not the case.

We show that any INMC for a class of threshold tampering functions that allows only a negligible
non-malleability error in fact implies an IC for the same class of functions in the common reference string
(CRS) model and with parties running in super-polynomial time. While the resulting IC is not efficient and
requires a CRS, it turns out that the lower bounds of Braverman and Rao [18] and Ghaffari, Haeupler, and
Sudan [50] also apply in this setting, therefore ruling out the existence of such INMCs. This result can be
found in Section 4. In fact, this impossibility even holds if we apply the notion of INMC to a weaker notion of
encodings which does not imply knowledge-preservation. Recall that we are using a strong notion of protocol
encoding that ensures that security guarantees of the underlying protocol are preserved. On the flip side,
positive results for IC only translate to the positive result for this weaker notion of INMC. Getting meaningful
positive result for our stronger INMC definition is an interesting open problem.

Interestingly (and fortunately), the above connection only holds for threshold tampering functions. Indeed,
for the remaining families of tampering functions we consider in this paper, IC is naturally impossible and
yet we are able to get positive results for INMC.

Bounded State Tampering Functions. For our first positive result we consider the class of tampering functions
which can keep a bounded state. In more detail, the adversary is assumed to be arbitrarily computationally
powerful, and we do not limit the size of the memory available for computing the tampering function. Instead,
a limit is only placed on the size of the state that can be carried over from tampering one message to
tampering with the next. That is, an adversary in this model can iteratively tamper with each message
depending on some function of all previous messages, but the size of this information is limited to some
fixed number of bits s. It is easy to see that achieving the notion of error correction is impossible for such a

tampering function family since an adversary even with no storage can change every protocol message to an
all zero string.

Adversaries with limited storage capabilities constitute a very natural model and similar adversaries have
been considered before in many settings, starting with the work by Cachin and Maurer [19] on encryption
and key exchange secure against computationally unbounded adversaries. In a seemingly related recent work,
Faust et al. [39] studied non-malleable codes against space-bounded tampering. However in their setting, a
limit is placed on the size of memory available to compute the tampering function (indeed it is meaningless
to consider the state carried over from one message to the next in the non-interactive setting).

We give an unconditional positive result for this family of tampering functions: Any underlying protocol
IT can be simulated by a protocol X' which is an INMC against bounded state tampering functions. A naive
way of trying to construct such a compiler would be to try and encode each message of IT using a suitable
(non-interactive) non-malleable code. However, this is doomed to fail. For a single message setting, our
tampering adversary simply translates to an unbounded general adversary for which designing non-malleable
codes is known to be impossible. Hence, getting a positive result inherently relies on making use of additional
interaction.

The key technical tool we rely on to construct our compiler is the notion of seedless 2-non-malleable
extractors introduced by Cheraghchi and Guruswami [25] as a natural generalization of seeded non-malleable
extractors [34]. However, finding an explicit construction of such extractors was left as an open problem by
Cheraghchi and Guruswami even for the case when both the sources are uniform. Such a construction was
first given by Chattopadhyay, Goyal, and Li [22]. The construction in [22] requires one of the sources to be
(almost) uniform, while the other source could have smaller min-entropy. We crucially rely upon a construction
of seedless 2-non-malleable extractors where at least one of the sources could have small min-entropy. Our
construction can be found in Section 5.

Split-State Tampering Functions. The second class we consider are split-state tampering functions where, very
roughly, the transcript is divided into two disjoint sets of messages and each set is tampered independently.
In more detail, the adversary can decide for each message of the protocol to be either in the first set or the
second one. To compute an outgoing message, the tampering function takes all messages (so far) in any one
set of its choice as input.

We are able to achieve interactive non-malleability for a strong class of these tampering functions, namely
c-unbalanced split-state tampering functions. A c-unbalanced split-state tampering functions can split the
transcript into two arbitrary sets, as long as each set contains at least a 1/c fraction of the messages (where ¢
can be any polynomial parameter).

This notion is inspired by a corresponding notion in the non-interactive setting. Split-state tampering
functions for non-interactive NMC are one of the most interesting and well studied classes of tampering
functions in that setting. It was already introduced in the seminal work of Dziembowski, Pietrzak, and Wichs
[36] and has since then been studied in a large number of works [60, 35, 3, 25, 24, 2, 26].

We give an unconditional positive result for this family of tampering functions: Any underlying protocol
II can be simulated by a protocol X' which is an INMC against split-state tampering functions. The key
technical tool we rely on in this case is a new notion of tamper evident n-out-of-n secret sharing we introduce
in this work. Such a secret sharing scheme essentially guarantees that any detectable tampering with the
shares can be detected when reconstructing the secret. Our construction can be found in Section 6.

Sliding Window Tampering Function. In the sliding window model, the tampering function “remembers” only
the last w messages. In other words, the tampering function gets as input the last w (untampered) messages
of the protocol transcript to compute the tampered message. The sliding window model is very natural and
has been considered in a variety of contexts, such as error correcting codes [48] including convolution codes,
streaming algorithms, and even in data transmission protocols such as TCP [55].

Our results in fact extend to a stronger model in which we can handle what we call fragmented sliding
window tampering functions. Functions in this class are allowed to remember any w of the previous protocol
messages (rather than just the w most recent ones). Thus in some sense, the window of message being stored
by the tampering function is not continuous but “fragmented”.

Comparing this class of functions with bounded-state tampering functions, we can see, that here the
tampering function can no longer retain some information about all previous messages, but instead all of
the information about some previous messages. Because there is no hard bound on the size of the state, but
instead on the number of messages which potentially differ in length, this means that the two models are
incomparable.

Comparing this class with c-unbalanced split-state tampering functions, we notice that here the maximum
size of the window is fixed and does not scale with the number of messages in the protocol. On the other hand,
however, the different sets of messages which the tampering can depend on are not required to be disjoint.
E.g., the tampering of each single protocol messages could depend on the first message of the protocol,
something that would not be possible in the case of split-state functions.

While this model has important conceptual differences to the our split state model, the techniques used
to achieve both of them are almost identical. In particular, essentially the same protocol as in the case of
c-unbalanced split-state tampering functions also works in this case, however the proof of security differs
slightly. Our construction can be found in Section 7.

A Common Approach. A common theme in all of our constructions is the following: We only attempt
to transfer a single message in a non-malleable way and then use this message to secure the rest of the
protocol. In more detail, Alice and Bob essentially exchange a random key k possibly using multiple rounds
of interaction such that the following holds. The two parties either agree on the correct key k or receive
completely independent keys k; and ko, (or, L which leads them to abort the protocol). Subsequently, all
future protocol messages will be encrypted with a one-time pad and authenticated with a one-time message
authentication code using k (assuming k is long enough). This allows us to achieve non-malleability as long as
we can ensure that the tampering function is not capable of predicting the exchanged key in any round. The
reason is as follows: as long as the key remains (almost) uniformly distributed from the point of view of the
tampering function f, the computation of f cannot depend on the encrypted messages, and any modification
of the encrypted messages would be caught by the MAC and cause an abort independently of the inputs.
The exact way in which we are able to prevent f from gaining any knowledge of k¥ depends strongly upon
the class of tampering functions. This leads to very different constructions of the key-exchange phase using
different technical tools.

Given the common approach described above, it may be tempting to abstract a non-malleable key-exchange
protocol as a new building block. Intuitively, this would allow us to easily extend our construction to new
classes of tampering functions simply by designing a new key exchange protocol for said class. However,
(maybe counter-intuitively) it turns out that it is very unclear how this abstraction would work. The class of
tampering functions F; allowed for the full INMC differs a lot from the class F> the key-exchange would
need to tolerate. Even worse, it is not clear how F> can be generically identified from F;. Or, the other way
round, given a key-exchange that is non-malleable relative to a class F3, it is not clear against which class
of functions the full protocol would then be non-malleable. In fact, our constructions for split-state and for
sliding-window show that F; can be the result of a complex interplay between the properties of F» and the
round complexities of both the key-exchange and the original protocol itself.

1.2 Related Works

Non-malleable Codes. To the best of our knowledge, there has been no prior work studying non-malleable codes
in the interactive setting. In the non-interactive setting, however, there exists a large body of works studying
non-malleable codes for various classes of tampering functions as well as various variants of non-malleable
codes. We provide a brief, but non-exhaustive, survey here.

The most well-studied class in the non-interactive setting are split-state tampering functions [60, 35, 3,
25,24, 2, 26, 59, 57, 58, 4]. But other classes of tampering functions have been studied such as tampering
circuits of limited size or depth [42, 10, 23, 11, 8], tampering functions computable by decision trees [12],
memory-bounded tampering functions [39] where the size of the available memory is a priori bounded,
bounded polynomial time tampering functions [9] and non-malleable codes against streaming tampering

functions [11]. Non-malleable codes were also generalized in several ways, such as continuously non-malleable
codes in [40, 31, 29, 61, 38, 30, 4] and locally decodable and updatable non-malleable codes [33, 21, 32].

While most work on non-malleable codes deals with the information theoretic setting, there has also been
recent work [1, 5, 6, 11] in the computational setting. In the computational setting, the work of Chandran et
al. [20] on block-wise non-malleable codes may seem as most closely related to our setting; however, there
are important differences. Firstly, Chandran et. al do not consider the setting where both parties may have
inputs. Instead their notion is similar to the original notion of non-malleable codes where a single fixed
message is encoded. Indeed, the entire communication is from the sender to the receiver (rather than running
an interactive bi-directional protocol between two parties). Further, their definitions are weaker, as they
inherently allow selective aborts whereas our definitions do not suffer from this problem.

Interactive Coding. Starting with the seminal work of Schulmann [64, 65, 66], a large body of works have
studied IC schemes for two-party protocols (see, e.g., [18, 47, 15, 43, 50, 49, 54, 37, 45, 17, 44]). Most recently,
several works have also studied IC for multiparty protocols [62, 56, 16, 7, 46] in various models.

Secure Computation without Authentication. We also mention a related work of Barak et. al. [13] on secure
computation in a setting where the communication channel among the parties may be completely controlled
by a polynomial-time adversary. The setting in their work is therefore inherently computational and their
techniques rely on using bounded concurrent secure multi-party computation and are unrelated to ours.
However, our setting can indeed be seen as being inspired by theirs.

2 Preliminaries
In this section we introduce our notation and recall some definitions needed for our constructions and proofs.

Notation. we denote by A the security parameter. For a distribution D, we denote by = <—s D the process of
sampling a random variable x according to D. By U, we denote the uniform distribution over {0,1}¢. For a
set S, x +—s .S denotes sampling from S uniformly at random. For a pair D1, Dy of distributions over a domain
X, we denote their statistical distance by

SD(Dy, Ds) = % Z‘ Priz =v]— Prlz=v]|.

veEX x(—Dl .’£<—D2

If SD(Dy, D3) < €, we say that Dy, Dy are e-close. We denote by replace the function replace : {0,1}* x
{0,1}* — {0,1}* that behaves as follows: If the second input is a singular value s then it replaces any
occurrence of same in the first input with s. If the second input is a tuple (s1,...,s,) then it replaces any
occurrence of same; in the first input with s;. We will write replace(D, x) for some distribution D to denote
the distribution defined by sampling d <—s D and applying replace(d, x).

Extractors In our constructions we make use of two types of extractors. We first recall the standard notion of
strong two-source extractors. Two source extractors were first implicitly introduced by Chor and Goldreich [27].
An argument due to Barak [63] shows that any extractor with a small enough error € is also a strong extractor.
This means we can instantiate strong extractors for example with the two-source extractor due to Bourgain [14].

Definition 1 (Strong 2-source Extractor). A function Ext : {0,1}" x {0,1}" — {0,1}™ is a strong
2-source extractor for sources with min-entropy k and with error € if it satisfies the following property: If X
and Y are independent sources of length n with min-entropy k then

Pr[SD(Ext(X,y),Un) > €] <e and Pr[SD(Ext(z,Y),Un) > €] <e.

Yy <+sY Tz +$X

Seedless 2-non-malleable extractors were first defined by Cheraghchi and Guruswami [25] but their construction
was left as an open problem. The definition was finally instantiated by Chattopadhyay et al. [22]. Such an
extractor allows to non-malleably extract an almost uniform random string from two sources with a given
min-entropy that are being tampered by a split-state tampering function.

We closely follow the definition from [22].

Definition 2 (2-non-malleable Extractor). A function Ext : {0,1}" x {0,1}" — {0,1}™ is a 2-non-
malleable extractor for sources with min-entropy k and with error € if it satisfies the following property: If X
and 'Y are independent sources of length n with min-entropy k and f = (fo, f1) is an arbitrary 2-split-state

tampering function, then there exists a distribution Dy over {0,1}™ U {same} which is independent of sources
X and Y, such that

SD((Ext(X.Y), Ext(fo(X). f1(Y))), (Un, replace(Dy, Un))) < €

where both Uy, refer to the same uniform m-bit string.

Tamper Evident Secret sharing We will define a new notion of tamper evident secret sharing in the following.
Such tamper evident secret sharing schemes behave the same as regular secret sharing, except that we are
guaranteed that the reconstruction algorithm is able to detect any detectable tampering of the shares that
would lead to a different reconstructed message and will reject them if they have been tampered with.

Intuitively a tampering is detectable if it meets two criteria: First it must leave at least one of the shares
unchanged, since otherwise the shares could simply be replaced by a completely independent sharing, which
is trivially undetectable. Second, each tampered share must be independent of at least one of the untampered
shares, except for some bounded leakage. This is formally defined in the following.

Definition 3 (n-out-of-n Secret Sharing). A pair of algorithms (Share, Reconstruct) is a perfectly private,
n-out-of-n secret sharing scheme with message space {0,1}* and share length ¢, if all of the following hold.

1. Correctness: Given all shares, the secret can be reconstructed. ILe., for any secret m € {0,1}*, it holds
that Pr[Reconstruct(Share(m)) = m] = 1.

2. Statistical Privacy: Given any strict subset of shares, the secret remains perfectly hidden. Le., for any
two secrets mg, my € {0,1} and any set of indices T C {1,...,n} it holds that for any (computationally
unbounded) distinguisher D

Pr[D((si)iez) =11 = Pr[D((si)iez) = 1].
§<—Share(myg) §<—Share(m1)
Definition 4 (Detectable Tampering for Secret Sharing).

Let (Share, Reconstruct) be an n-out-of-n Secret Sharing scheme, let m € {0,1}¢ be a message. A tampering
function f for a secret sharing (s1,...,sn) of m with v bits of leakage is described by functions (f1,..., fn),
sets of indices ", ..., I" and leakage functions (leaky,...,leak,) such that leak; : {0,1}* — {0,1}" and

Flstoessn) = (fi((s) ez teakil(s5)jzp)) o S (53) ey Yeaknl(sy) g2y)

For any fized secret sharing § < Share(m) let M be the set of indices i, such that s}, # s; for (sy,...,s) ==

f(sl,.._.,sn). A tampering function f is called detectable for s if it holds that for all i € M we have
MUTIIM C{1,...,n}. We define the predicate Dtct(S, f) to be 1 iff f is detectable for 3.

This now allows us to formally define tamper evident n-out-of-n secret sharing.

Definition 5 (Tamper Evident n-out-of-n Secret Sharing). A perfectly private secret sharing scheme
(Share, Reconstruct) is said to be e(A)-tamper evident for up to v bits of leakage if the reconstruction algorithm
will reject shares with overwhelming probability if they have been tampered detectably with up to v bits of
leakage. Le., for all m € {0,1}* and all detectable tampering functions f with v bits of leakage it holds that

Pr[Dtct(S, f) = 1 A Reconstruct(f(5)) & {m, L}] < e(X)

§<—Share(m)

We show how to instantiate this notion from XOR-based secret sharing and an information theoretic message
authentication code in Appendix A. The concept of tamper evident secret sharing may seem superficially
similar to non-malleable secret sharing [51] but the two concepts are in fact incomparable. The guarantee
of tamper evident secret sharing is very strong, requiring that the secret cannot be changed except to L,
but only holds against a weak class of tamperings that must leave at least one share unchanged. In contrast,
NM-secret sharing provides a weaker guarantee, namely that a tampered secret must be unrelated, but against
a stronger class of tampering functions.

3 Definitions

In this section we first formally define interactive protocols and encodings of interactive protocols. We then
introduce our notions of non-malleability for encodings of interactive protocols.

3.1 Interactive Protocols

We consider protocols IT between a pair of parties Py, P, (also called Alice and Bob, respectively, for
convenience) for evaluating functionalities g = (go, g1) of the form g, : X x Y — Z, where XY, Z are finite
domains. Alice holds an input z € X, and Bob holds y € Y, and the goal of the protocol is to interactively
evaluate the functionality, such that at the end of the protocol Alice outputs go(z,y) and Bob outputs
91(z,y). The interactive protocol consists of r rounds, in each of which a single message is sent. Without
loss of generality we assume that the parties in I alternate in sending their messages and that Alice always
sends the first message. Formally, an interactive protocol II between two parties is described by a pair of
“next message” functions mg, w1 (or 74,7) and a pair of output functions outy and outp.The next message
function 74 (wp) takes the input x (y), round number i, and message sequence sent and received by Alice
(Bob) so far transs (transg) and outputs the next message to be sent by Alice (Bob). For simplicity of
notation, we assume w4, 7wp always output binary strings. Furthermore, we assume that each message output
by ma, g is always of the same length ¢. The output function out (outp) takes as input = (y) and the final
message sequence sent and received by Alice (Bob) transs (transg) and outputs Alice’s (Bob’s) protocol
output. We denote by Trans(x, y) the function mapping inputs z,y to the transcript of an honest execution
of IT between A(x) and B(y). Note that in this setting we do not explicitly consider probabilistic protocols.
However, this is not a limitation, since any probabilistic protocol can be written as a deterministic protocol
with additional random tapes given as input to the two parties A and B.
This now allows us to define both correctness of a protocol as well as encodings of interactive protocols.

Definition 6 (Correctness). A protocol II, is said to e-correctly evaluate a functionality (go, g1) if it holds
that without tampering the output of each party outy(xp, transy) = gp(To, x1) with probability > 1 — €.

Definition 7 (Encoding of an Interactive Protocol). An encoding II' of a protocol II = (A, B) is
defined by two simulators Sy, S1 with black-box access to stateful oracles encapsulating the next message
functions of A and B respectively. The protocol Il' = (S§', SE) is an e-correct encoding of protocol I1 = (A, B)
if for all inputs x,y, II' = (Sé(m), S{B(y)) e-correctly evaluates the functionality (Trans(z,y), Trans(z,y)).
We note that, given a correct encoding II’ of protocol II evaluating functionality (go, g1) it is easy to also
evaluate (go, g1). To do so, simply run 1’ resulting in output 7 = Trans(z, y) and then evaluate out(z, T)
and outp(y,) respectively. Definition 7 slightly differs from the interactive coding literature [65, 15]. In
most of the IC literature, encodings are not defined relative to a stateful oracle, but instead relative to a
next-message function oracle as seen in Definition 8.

Definition 8 (Encoding of an Interactive Protocol). An encoding II' of a protocol II = (A, B) is
defined by two simulators Sy, S1 with black-box access to an oracle containing the next message function of
A and B respectively. The protocol II' = (S§', SP) is an e-correct encoding of protocol Il = (A, B) if for all
inputs x,y, II' = (S§*(x), ST (y)) e-correctly evaluates the functionality (Trans(z,y), Trans(z,y)).

This difference is significant, because, as observed by Chung et al. [28] in the context of IC, an encoding as
defined in the IC literature can leak the parties’ inputs under adversarial errors. L.e., security guarantees of
IT are not necessarily preserved under II’. In contrast, under Definition 7, any security guarantee of IT is
preserved under IT’. This follows from the fact that the encoding is defined using a pair of simulators with
only black-box access to A and B without the ability to know the inputs or rewind the participants of the
underlying protocol. Therefore, access to this oracle is equivalent to communicating with an actual instance
of A (or B respectively). Any attacker against I — whether a man in the middle attacker or an attacker
acting as either A or B — always has at least black-box access to the two parties. This means she can easily
simulate IT’ simply by running Sy, S; herself. Thus any attack against some arbitrary security property of I’
directly corresponds to an attack against the same property of IT, implying that security guarantees of II are
preserved under IT'.

Protocols under Tampering. It may appear tempting to try and define non-malleability in the interactive
setting in the same manner as regular non-malleability by, e.g, considering tampering on the full transcript of
the protocol. Split-state tampering for an r-round protocol would then for example mean that an adversary
could separately tamper on the first n/2 and the second n/2 of the protocol messages. However, at least in
the synchronous tampering setting we’re focusing on such a definition would be very problematic. It would
allow an adversary to tamper with the first message depending on future messages, which themselves could
depend on the first message, therefore potentially causing an infinite causal loop, even if we allow such
“time-travelling” adversaries. So instead we make the reasonable restriction that tampering on each message
must happen separately and can only depend on past messages.

We formally describe the process of executing a protocol under tampering with a tampering function
f € F, from some family of tampering functions F. First, empty sequences of sent and received messages
trans, = transp = @) are initialized. Lets assume that it is Alice’s turn to send a message in round . The

next message function 74 is evaluated to compute the next message m; := wa(x,,transs). Then m; is
added to Alice’s transcript trans := trans||m;. Next the tampering function is applied to compute the
tampered message m} := f(my,...,m;) and m} is added to transp := transg|m}. If it is Bob’s turn the

execution proceeds identically with reversed roles. Finally the output functions of Alice and Bob are evaluated
respectively as outa(z, transy), outp(y, transp). Note that due to tampering it does not necessarily hold for
the sequences of messages transq = mil,...,m4 and transg = m?,..., m? that m* = mP.

We note that this only models “synchronous” tampering, meaning that the adversary cannot drop or delay
messages or desynchronize the two parties by first running the protocol with one party and then the other.
This choice is partially inspired by the literature on interactive coding and helps keep our definitions simple.
However, cryptographic primitives such as non-malleable commitments have been studied in the setting where
there is a non-synchronizing man-in-the-middle adversary. We remark that even in these settings, getting
a construction for the synchronous case is often the hardest (for example, there exist general compilers for
non-malleable commitments to go from synchronous security to non-synchronous security [67]). We leave the
study of more general tampering models for INMCs as an interesting topic for future work.

3.2 Interactive Non-malleable Codes

In the non-interactive setting, non-malleability intuitively means that after tampering the result should be
either the original input, or the original input should be completely destroyed, i.e., the output should be
independent of the original input. In the interactive setting, there are two different outputs and two different
outputs and the question is which output (or pair of outputs) should be independent from which input(s).
This leads to an entire space of possible notions, however we settle for the strongest possible — and arguably
most natural — notion: In this notion we simply call protocol-non-malleability, we require that the output of
Alice and Bob respectively are either the correct transcript Trans(z,y) or L and that the product distribution
over the two is (almost) completely independent of the two parties’ respective inputs z and y. It is very
important that the decisions whether to output L or not must be made independently of z and ¥, since
otherwise an adversary could potentially force selective aborts and thus learn at least one bit of information
about the combined input. This means that protocol-non-malleability not only implies error detection, but is

10

even stronger, since in error detection the output distribution over the real output and L is not required to
be independent of the inputs.

We note, that weaker definitions may still be meaningful and are not necessarily trivial. In Section 4 we
will show that even for a much weaker notion of protocol-non-malleability strong lower bounds exist in the
case of threshold tampering functions. We formally define protocol-non-malleability in the following.

Definition 9 (Protocol Non-malleability). An encoding II' = (Sgt,SEP), of protocol II = (A, B) is
e-protocol-non-malleable for a family F of tampering functions if the following holds: For each tampering
function f € F there exists a distribution D¢ over {1,same}? such that for all x,y, the product distribution

of S2@ s and SBW s outputs is e-close to the distribution replace(D, Trans(z,y)).
0 1 !

4 Lower Bounds for Threshold Tampering Functions

Threshold tampering functions are classes of tampering functions where the function is only limited in
the fraction of the messages they can tamper with. For these classes of tampering functions, lower bounds
are known in the case of interactive codes. Specifically Braverman and Rao [18] showed that non-adaptive
interactive codes can tolerate tampering with at most 1/4 of the transcript, and Ghaffari, Haeupler, and Sudan
[50] showed that an adaptive interactive code can tolerate tampering with at most 2/7 of the transcript. A
natural question to ask is whether one can bypass these lower bounds in the case of non-malleable interactive
codes. Unfortunately, we show in the following that the known lower bounds for interactive coding translate
to identical lower bounds for negl(¢)-non-malleable interactive coding. In fact, we show that the lower bounds
even apply to a much weaker form of protocol-non-malleability, where each party’s output by itself (rather
than the product distribution of both outputs) only needs to be independent of the other party’s input.

The basic idea of this lower bound is essentially to show that a non-malleable interactive code is also a
regular interactive code. In any encoded protocol, if the output of one party in the underlying protocol depends
non-trivially on the other party’s input (which should always be the case since otherwise the communication
is completely unnecessary) then information theoretically, the transcript must leak this information. If the
encoding was not error correcting, then that means that there is a way for a threshold tampering function to
cause at least one of the parties to abort. Since the tampering function is unlimited in it’s knowledge of the
transcript, it can extract the information about one of the parties’ input and depending on the function of
the input thus revealed either cause the abort or not. This would be an input dependent abort which clearly
means that the encoding is not non-malleable.

However, this straightforward approach does not work. The reason is, that the information about the
input might only be revealed in say the ith message of protocol, while the threshold tampering function
requires tampering with earlier messages to cause the abort. But there is a way around this problem. If we
can cleanly define which message in the protocol is the first message that reveals information about the input,
then we can construct another INMC in the CRS model, where all previous messages are pushed into the
CRS. This is possible since those messages are “almost” independent of the actual input and it is possible
for the INMC to (inefficiently) sample a consistent internal state, once it gets the input. This means that
now the information about the input is revealed in the very first protocol message and thus the approach
described above works.

For the lower bound to translate to INMC, we therefore need that the lower bounds for IC apply also
to inefficient interactive encodings in the CRS model. Luckily, this follows easily from the structure of the
results in [18] and [50]. We discuss the application of the bounds to the CRS model in a bit more detail in
Appendix B.

As mentioned above, we can in fact show this lower bound for a much weaker form of non-malleability we
formally define in the following.

Definition 10 (Weak Protocol Non-malleability). An encoding II' = (S§', SE), of protocol IT = (A, B)
is e-weakly-protocol-non-malleable for a family F of tampering functions if the following holds: For each
tampering function f € F and for each x (resp. y) there exists a distribution DAJc (resp. Dﬁy) over

11

{L,same} U {0,1}"™ such that for all y (resp. x), the output distribution of ,5'64(‘/1") (resp. Sf(y)) is e-close to
the distribution replace(Dﬁm,Trans(x,y)) (resp. replace(ny,Trans(x,y))).

It is easy to see, that this notion is strictly weaker than protocol-non-malleability as defined in Definition 9.
If a distribution Dy as required by Definition 9 exists, then Dﬁx and D? , can easily be sampled by sampling
from Dy and throwing away half of the output. On the other hand, since DJ‘Z‘J can depend on z, it does not
help in sampling a distribution Dy that is required to be (almost) independent of x.

Theorem 1. Let IT = (A, B) be an r-round protocol with inputs x,y € {0,1} such that there exists at
least one triple of inputs (x7,25,y*) or (z*,y],y;3) such that Trans(z7,y*) # Trans(xs, y*) or Trans(z*, y7) #
Trans(a*,y3) respectively. Let II' be an 6(£)-correct, negl (£)-weakly-protocol-nonmalleable INMC' for protocol
IT for a family F of threshold tampering functions. Then there also exists an (computationally unbounded)
interactive code II in the CRS model for the same protocol IT and the same family of threshold tampering
functions F.

Proof of Theorem 1 By assumption there exists at least one triple of inputs (z, z7,y*) or (z*, vy, y7)
such that Trans(zf,y*) # Trans(z}, y*) or Trans(x*,ys) # Trans(z*,y]) respectively. This implies that the
full transcript of I’ must information theoretically reveal a noticeable amount of information about the
inputs of at least one party. Therefore, at least one of the following must hold:

1. There exists a round 4 and a pair of Alice’s inputs x§, 27 such that for Bob’s input y*, uniformly sampled

input z < {0,1}", and a partial transcript my, ..., m; < <SlA(w), Sf(y*)> it holds that

1
Priz =af |z € {xf,27}] — Prlz = 2] |z € {xf, 27}]| > 1
Prle = o |o € {a5,01}] — Prle = af o € {af.01}]| > o (1)
while for all previous rounds j < ¢ and all pairs of inputs for Alice xq, 1, all inputs y for Bob, a uniformly

sampled z <—s {0, 1}%, and a partial transcript mq, ..., m; < (Sf(z), Sf(y)> it holds that

|Priz = 2o |z € {xo,21}] — Prlz = z1 |z € {xg,21}]| < negl(¢) (2)

2. There exists a round k and a pair of Bob’s inputs yg, yi such that for Alice’s input z*, uniformly sampled
input y < {0,1}¢, and a partial transcript my,...,m; + <S{4(x), SQB(y)> it holds that

* * * * * * 1
[Prly =y |y € {vo,vi}] — Prly = ui |y € {vg, v1 }]| > poly (0] (3)

while for all previous rounds j < k and all pairs of inputs for Bob g, 1, all inputs x for Alice, a uniformly
sampled y s {0,1}, and a partial transcript mq, ..., m; (Sfl(m)7 Sf(y)> it holds that

[Prly =voly € {yo,y1}] — Prly =y1 |y € {yo, y1}]| < negl(¥) (4)

If a round 7 does not exist such that Equation 1 holds, then Equation 2 holds for all rounds j < r and we
define ¢ = r 4+ 1. Respectively, if a round k£ does not exist such that Equation 3 holds, then Equation 4 holds
for all rounds j < r and we define k = r + 1.

We use this property to construct a (computationally unbounded) INMC IT in the CRS model for the
same protocol II and the same family of tampering function F as follows: The CRS is computed by sampling
random z’,y’ < {0,1}¢ and computing a partial transcript my, ... s Mnin(i,k)—1 (Sf(zl), Sf(y/)>. We then
set crs = (M1, ..., Mmin(i,k)—1)- We denote by crs(z’,%') a crs computed based on inputs =’ and y'.

The execution of 1T works as follows: $;* (crs) and S, 7 (crs) uniformly sample — using their unbounded
computational power — an internal state of S7 and So respectively consistent with x (respectively y) and the
partial transcript present in the crs. Such a sampling will always be successful for crs(x, y). Further, Equation 2
and Equation 4 imply that for any pair of inputs 2/, the statistical distance SD(crs(x,y),crs(z’,y’)) is

12

negligible. Therefore, for a CRS computed with uniformly sampled 2,y this sampling will be successful with
probability 1 — negl(¢). Proceeding from this internal state, §1A(w)(crs) and S’_QB(y)(crs) then simply execute
the original INMC II’. Thus IT is § + negl(¢) correct. Further, IT remains negl(¢) non-malleable. This is
clear since any valid threshold tampering function on IT would in particular be a valid threshold tampering
function on IT'.

We will now argue that this implies that IT is also an & + negl (¢)-correct interactive code, i.e. provides error
correction. Assume towards contradiction that this were not the case. I.e., assume there exists a threshold
tampering function f that when applied successively to the messages exchanged in II causes at least one of
the parties to abort. Then we construct a threshold tampering function causing a selective abort as follows:
The tampering function f' = (f1,..., f/) takes as input the CRS crs as well as the transcript so far and
computes the probabilities Py = Pr[z = zf] and P, Pr[z = 2}] conditioned on the transcript contained in
the crs and the first message of the protocol and is then defined as

m; lf1302131

filcrs,mq,...,m;) otherwise

fi/(crs7m1a"'ami) {

It remains to show that this causes an output distribution that cannot be approximated without knowledge
of z,y. We denote by Abort(z,y, crs(z’,y')) the event that at least one of the parties aborts and outputs L in
a protocol execution of IT’ with inputs « and y and crs crs(z’,y’) that is being tampered by f’. If i < k then
it holds that

Pr [x,y «{0,1}* : Abort(z}, y*, crs(z,

]

((z,9))
—Pr[z,y < {0,1}" : Abort(a}, y*, crs(z,y))]
. Pr [x,y + {0, 1}j : Abort(z, y*, crs(z, y)) |x € {x(’;,x’{}]‘ ~ negl(0) (©)
—Pr [x,y +{0,1}" : Abort(z7, y*, crs(x, y)) ‘x € {mg,x’{}]
ZW — negl(¥) (7)

where Equation 6 follows from Equation 2. As noted before, Equation 2 implies that the statistical distance
between crs(z,y) and crs(z’,y) is negligible and therefore Equation 6 must follow. Finally Equation 7 follows
immediately from Equation 1. Since Equation 7 implies a statistical distance of 1/poly(¢) between the
output distributions of II’ with inputs z§, y* and z7,y*, clearly there cannot exist a distribution sampled
independently of the inputs that has negligible statistical distance from both output distributions. Therefore
IT" cannot be negl(£)-nonmalleable. Likewise, if & < ¢ then we have that

Pr [x,y + {0, 1}é : Abort(z*, yg, crs(:c,y))] ®)
—Pr[z,y < {0,1}" : Abort(z*, y7, crs(z,y))]
Prz,y < {0,1}" : Abort(z*, v, crs(z, e {ys, vr
. rfz,y { }4 (" y5,crs(@,y) | = € {5, 91 }]| negl ())
—Pr [x,y + {0,1}" : Abort(z*, y7, crs(z,y)) |$ € {yS,yT}]
1
>———— —negl(/ 10
2 oy @) gl(¢) (10)

which follows equivalently from Equation 4 and Equation 3 and also implies that II’ cannot be negl(¢)-
nonmalleable. O

Applying the Lower Bound to Other Tampering Functions It is natural to ask whether the lower
bound stated above also applies to other classes of functions. This would be unfortunate, since it would
trivially rule out INMCs for most classes of tampering functions. However, fortunately, this is not the case.

In the proof of Theorem 1, we explicitly use that the tampering function at any point has complete
knowledge of the full transcript so far and is completely unbounded in the resources necessary to compute the

13

tampering. It then follows that if the transcript information theoretically reveals anything about the inputs,
then the tampering function can extract this information and cause a conditional abort, thus allowing for
the proof to go through. In each of the classes of tampering functions we consider in the following sections,
however, the tampering functions are restricted in one way or another in its view of the full transcript. This
means that the proof no longer applies, since even when the full transcript contains information about the
inputs, the tampering function is no longer capable of extracting it.

In fact, we explicitly exploit this observation in each of our protocols. Our protocols consist of an initial
input-independent phase, where key material is established. This phase is constructed in such a way that in
any future round, the established key material will be almost uniform from the point of view of the tampering
function. Using information theoretically secure encryption and authentication we can then execute the
underlying protocol in such a way that the transcript of that execution is remains independent of the input
from the point of view of the tampering function.

5 Bounded State Tampering

The first class of tampering functions we consider are tampering functions with bounded state. This is a
very natural model in which adversaries are assumed to be arbitrarily powerful, but there exists an a priori
upper bound on the size of the state they can hold. Similar adversaries have been considered before in many
settings, starting with the work by Cachin and Maurer [19] on encryption and key exchange secure against
computationally unbounded adversaries. Recently, in related work, Faust et al. [39] studied non-malleable
codes against space-bounded tampering. However, the notion of bounded state tampering we introduce in
this section is stronger than one would expect from naively extending the notion to interactive non-malleable
codes. In particular we do not limit the size of the memory available for computing the tampering function.
Instead, a limit is only placed on the size of the state that can be carried over from tampering one message
to tampering with the next. L.e., the idea is, that an adversary in this model can iteratively tamper with each
message depending on some function of all previous messages, but the size of this information is limited to
some fixed number of bits s. We formally define this in terms of a tampering function in the following.

Definition 11 (Bounded State Tampering Functions). Functions of the class of s-bounded state
tampering functions Fpq for an r-round interactive protocols are defined by an r-tuple of pairs of
functions ((g1,h1), ..., (gr, hr)) where the range of the functions h; is {0,1}*. Let my, ..., m; be the messages
sent by the participants of the protocol in a partial execution.The tampering function for the ith message is
then defined as

filma, ... omg) o= gi(mi, hiy (mi—1, hi—a(mi—s, ...))).

5.1 Interactive Non-Malleable Code for Bounded State Tampering

We devise a generic protocol-non-malleable encoding I for bounded state tampering for any two-party
protocol I1y. The basic idea is to first run a key exchange phase in which Alice and Bob exchange enough key
material that they can execute the original protocol encrypted under one-time pad and authenticated with
information theoretically secure MACs. The main challenge is to craft the key-exchange phase in such a way,
that the adversary’s limitations, i.e., having bounded state, preclude her from both, learning any meaningful
information about the exchanged key material, as well as influencing the key material in a meaningful way.
For bounded state tampering functions, we achieve this using 2-non-malleable extractors. The idea behind
this is that each party chooses two random sources that are significantly longer than the size of the bounded
state and sends it to the other party. Both parties then apply a 2-non-malleable extractor to each pair of
sources and thus extract a key they can use to secure the following communication using information theoretic
authenticated encryption. A tampering function with bounded state will not be able to “remember” enough
information about the two sources to predict the exchanged key with a any significant probability and thus
will not be able to change the authenticated ciphertexts without being caught. Formally this is stated in the
following theorem.

14

Algorithm 1: Protocol II against bounded state tampering functions

We compile Iy into IT below. Let Ext and IIy be as in Theorem 2. The communication proceeds in three phases,

a key exchange phase, a key confirmation phase and a protocol execution phase. All messages in the following

protocol have a fixed length. Whenever a party in the protocol aborts, she outputs L instead of a transcript.

Key Exchange Phase: Alice chooses two strings a1, @z and Bob chooses two strings 1, 82 all of length n. The

two parties then alternatingly send the two strings.

1. First Alice then sends a1, then Bob sends (1, Alice sends az, and Bob finally sends (.

2. Both parties use the extractor to extract ki := Ext(ai1, a) and kg := Ext(S1, B2) and set k := k1 @ k2. They then
split k = ka ks ||k3"" |k . . [|k3“"(|kS" into substrings, where |ka| = k| = |k = 2 and [k$™| = £.

Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.

1. Bob chooses a random challenge cp <s{0,1}* and sends it to Alice.

2. Alice computes tp := MAC(kg, cg), chooses a challenge ca <s {0, 1})‘, and sends tp,ca to Bob.

3. If Vf(kB,cB,ts) = 1, then Bob sends t4 := MAC(ka,ca) to Alice. Otherwise he aborts.

4. If Vf(ka,ca,ta) =1 then Alice proceeds to the next phase. Otherwise she aborts.

Protocol Execution Phase: Both parties initialize their view of the underlying protocol as an empty list

transa = @) and transg = (). Starting with Alice’s first message Alice and Bob proceed as follows for each message:

1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message function of the
underlying protocol m; := 74 (4, z, trans) (resp. m; := 7% (4, y, transg)) and adds the message to her view
transa := transa||m; (resp. transp := transg||m;).

2. Next the party computes the one-time pad encryption ¢; := m; @ k" of m; as well as an authentication tag
t; = MAC(kf”th, ¢;) and sends ¢;, t; to the other party.

3. If the authentication tag verifies, i.e., V(" ¢;,t;) = 1 the other party decrypts m; := ¢; ® k™ and adds the
message to their view, i.e., transa := transal||m; or transp := transg/||m;.

4. Finally the underlying protocol terminates and both parties output their respective transcripts transa or transg
or L if they aborted at any point during the protocol.

Theorem 2. Let Il denote a correct, r-round protocol, with length-f messages. We assume wlog that Alice
sends both the first and last message in Iy Let s € N be any bound as defined in Definition 11. Let N
be the target security parameter, then we set A\ = max(¢,)\'). Let MAC : {0,1}?* x {0,1}* — {0,1}* be a
2= -secure information theoretic message authentication code. Let Ext : {0,1}" x {0,1}" — {0, 1}7¢+2r+4)A
be a 2-non-malleable extractor for sources with min-entropy n — (s + A) and with error €. Then there exists a
r 4 T-round encoding IT of IIy that is 5e 4 4 - 2~ -protocol-non-malleable against T ounded-

Note that the required extractor can be instantiated using the construction of Chattopadhyay et al. [22],
while the MAC can be instantiated with a family of pair-wise independent hash functions.

Proof of Theorem 2. The protocol IT is specified in Algorithm 1. We need to argue that the protocol is
correct and protocol-non-malleable.

Correctness: The correctness of IT follows from the fact that the extractor is deterministic and the message
authentication code is correct. Since the extractor is deterministic, both parties will extract the same string
k. The correctness of the message authentication code then implies neither party will ever abort during the
protocol. Further, since the one-time pad is correct it follows that messages of the underlying protocol will
always be decrypted correctly and thus both parties are faithfully executing an honest instance of Ily. Thus
at the end of the protocol the collected transcripts correspond to an honest execution of I1j.

Protocol-non-malleability: Let f be an s-bounded state tampering function described by ((g1, k1), - .., (gr, hr))-
To prove that the coding scheme is protocol-non-malleable, we need to prove that a distribution D¢ as in
Definition 9 exist.

The distribution Dy When sampling from D¢ we need to deal with the problem that in addition to the s bits
of state f can keep by design, it can learn additional information by making use of conditional aborts. IL.e.,
in round ¢ the function g; can force an abort in the protocol unless the message sent in round ¢ is “good”.
In any future round j > %, even if it’s s bit state does not retain any information about m; the function g;
therefore “remembers” that m; must have been “good”, since otherwise the protocol would have aborted.

15

Algorithm 2: Sampler of distribution D for Algorithm 1

1. Sample four strings au, az, 1, B2 s {0,1}".
2. Apply the tampering function to the messages as o} := fi(a1), 1 := fa(a1,51), ab = fs(a, 1, a2),
ay := fa(a1, Bi, a2, B2) and extract ki := Ext(a1, a2) and ko := Ext(B1, B2) as well as k; := Ext(al,) and
k5 := Ext(B1, B3). Set k := k1 ® ky and k' := k| @ ko.
3. If ¥’ # k output (L, 1) and stop.
4. If k' = k, then simulate a protocol execution tampered with f as follows
(a) Replace all messages with random strings of appropriate length and apply the tampering function to those
messages.
(b) If for any index 7 < ¢ < r + 7 it holds that m; # fi(ma,...,m;) output (L, L) and stop.
(¢) If it holds that m,+7 # fry7(ma,..., mr17) output (same, L) and stop.
5. If the simulated interaction completed successfully, output (same,same).

Technically the tampering function can use conditional aborts to leak an arbitrary amount of information.
However, this comes at the expense of having to abort with high probability. Let 1 — §(\) be the probability of
f causing either party to abort before the last message in the protocol is sent. Then this allows the tampering
function to leak at most log 6 ~*(\) additional bits to future rounds. Note that causing an abort by tampering
with the very last message cannot add any additional leakage, since there are no more future rounds to
consider. Further note, that either party aborting before the last message is sent automatically causes both
parties to output L in the synchronized setting.

We use the above observation to sample from D by sampling differently depending on §(A). If §(\) < 27,
the distribution Dy is sampled by simply outputting (L, L). Clearly this distribution is 27 close to the real
distribution, since f causes both Alice and Bob to abort and output L with probability at least 1 — 2=, If
§ > 27, the distribution D t is sampled as shown in Algorithm 2. The difference between Dy and the real
tampered transcript distribution is captured by the event in which the sampler aborts the execution in steps
4b or 4c, but the real execution continues. To see why Dy is close to the tampered transcript distribution,
consider the four cases.

1 The tampering function did not change (a1, as2) or (81, 82): This is the simplest case. Note that the
tampering function may store a bounded function of the messages seen so far. That is, the tampering function
stores v = hy(B2, hg(az, h2(B1, h1(aq)))) where h; denotes a memory bounded function as described above.
We claim that given v and up to log6~*(\) = XA many bits of additional leakage due to conditional aborts,
(K1, k2) and hence k is 2e-close to uniform. This follows from the property of strong extractors. Conditioned
on 7 and the leakage, the sources (a1, as) are still independent and have sufficient min-entropy. This may not
be immediately apparent, since future tampering can depend on -y, which technically constitutes joint leakage
over (a1, as). However, we can see that this particular joint leakage is not an issue for a 2-nonmalleable
extractor by switching to a different but equivalent viewpoint. If we fix hy (1), then oy is no longer uniformly
distributed but it is still a source with a distribution with at least n — s bits of min-entropy. This is ensured
by the fixed upper bound on the size of the leakage. From this viewpoint, since hj(«y) is fixed, v is no longer
joint leakage over (aq, @) but merely bounded leakage over as. The same applies to additional potential
leakage due to conditional aborts, leaving us with a source «; with at least n — (s + A) bits of min-entropy.
Similarly, the same holds for sources (81, 32).

Now it follows that if the tampering function changes any message in the protocol execution phase, the
MAC verification will fail (up to the error 27%) causing the receiving party to abort. Unless the tampered
message was the one sent in round r 4 7 this in turn automatically causes the other party to abort as well
(corresponding to step 4b). If the tampered message was the one sent in round r + 7 then only Bob would
abort (corresponding to step 4c). Furthermore, by the property of one-time pads, the probability of the
tampering function changing any message is independent of the message itself.

2 The tampering function changed (a1, az) (i.e., changed at least one of them) but not (81, 52): We
claim that ky := Ext(a, as) is e-close to uniform given v and up to A many bits of additional leakage due to
conditional aborts, k] := Ext(a], ob), and (81, f2). This follows from the fact that k; is e-close to uniform
given ki, v and X bits of leakage (by the property of 2-non-malleable extractors), and, that (81, 32) are
independent of (v, «2). This also implies that k; is e-close to uniform given v, k7, (81, 82), k2, and A bits of

16

leakage since ko is entirely determined by (81, 32). This in turn implies that k; is e-close to uniform given
v, k4, (B1, B2), ka, kb, and X bits of leakage since kj = k2. This implies that k = k1 @ k) is e-close to uniform
conditioned on v, k7, (81, B2), k2 and leakage. This finally implies that k is e-close to uniform conditioned on
v, k" = k| @ ks and leakage. Thus, the MAC verification will fail for Alice in the key confirmation phase (up
to the error 27) causing both parties to output L.

3 The tampering function changed (81, 82) but not (a, as): This case is symmetric to the previous case.

4 The tampering function changed both (aj,as) and (81, 52): The only difference between this case
and case 2 is that now k) may not be equal to ky. As in the previous case, ki is almost uniform given
v, k1, (B1, B2), ke and leakage. But note that &} is entirely determined by (81, 82), v and the (fixed) tampering
function. Hence, k; is almost uniform given v, k1, (81, B32), k2, k% and leakage.

Overall using a union bound over the errors of the extractor and the MAC, we get an upper bound on the
statistical distance between D; and the outputs of a real execution of 5¢ + 4 - 2-X, a

6 Split-State Tampering

Split-state tampering functions are one of the most interesting and well studied families of tampering functions
for regular non-malleable codes and were already considered by Dziembowski, Pietrzak, and Wichs [36] in
their seminal paper. A 2-split-state tampering function independently tampers on two fixed disjoint parts of
a codeword. Transferring this idea to the interactive setting is straightforward. We can divide the transcript
of a protocol into two disjoint sets of messages and allow the tampering function to tamper independently on
those two sets.

However, we are actually able to achieve protocol non-malleability for a stronger class, namely c-unbalanced
split-state tampering functions. In the regular split state setting, the encoding scheme determines the “split”.
In contrast, a c-unbalanced split-state tampering function can split the transcript into two arbitrary sets, as
long as each set contains at least a 1/c fraction of the messages.

Definition 12 (c-Unbalanced Split-State Tampering Functions). Functions of the class of c-unbalanced
2-split-state tampering functions fgtmng_split for an r-round interactive protocols are defined by an r-tuple of
functions (g1, .- .,gr) and two disjoint sets Lo, Iy such that min(|Zy|,|Z1]) > r/c and ZoUZ; = {1,...,r}. Let
mi,...,m; denote the messages sent by the participants of the protocol in a partial execution. The tampering
function for message m; is then

. N\) 9il(my)jer, j<i) ifi€To
Floms o) {gz‘((mj)jezl,jgi) ifiel

. . . 2
As a special case functions in Ftrong-split Tust split the messages into two equal size sets. These functions

are also alternatively simply called split-state tampering functions, since the split is not unbalanced.

6.1 INMC for Split-State Tampering

We devise a generic protocol-non-malleable encoding IT for c-unbalanced split-state tampering functions for
any two-party protocol IIy. The basic idea of the encoding will seem similar to the protocol for bounded
state tampering functions, however the instantiation is quite different. We again first run a key exchange
phase in which enough key material is exchanged to execute the original protocol encrypted under one-time
pad and authenticate all messages with information theoretically secure MACs. The main difference is in
the implementation of the key exchange phase. Unlike before, where we relied on non-malleable extractors,
we use a notion of tamper-evident n-out-of-n secret sharing in this case. The idea behind this is that both
parties contribute to the key material k = Ext(ki, k2) and share their part of the key-material into many
shares that are sent in separate messages. If we are able to enforce that the tampering function must jointly
tamper with almost all of the messages in the key-exchange phase to be able to predict the key with any
significant probability, then we can scale the key exchange phase to make sure that such a function would not

17

be c-unbalanced. The tamper-evidence of the secret sharing scheme allows us to ensure that either party’s
shares must be tampered with jointly to learn anything about the reconstructed secret. However, this is not
enough. We must also ensure that the other party’s messages must also be tampered jointly. We achieve this
via a use of MACs with “successively revealed keys.” I.e., each message must be authenticated using a key
that is only revealed if one has knowledge of all of the other party’s previous messages. In this way, each
message is “chained” to the other party’s previous messages and any successful tampering must necessarily
tamper with the full key-exchange phase in a joint manner.

Theorem 3. Let IIy denote a correct, r-round protocol, with length-¢ messages. Let (Share, Reconstruct) be
a [((c—=1)(r+5)+1)/2]-out-of-[((c — 1)(r + 5) + 1)/2] perfectly private, € -tamper evident secret sharing
scheme for up to \/2 bits of leakage with message length ¢ and share length ¢’ Let X' be the target security
parameter, then we set A = max((, ', \'). Let MAC : {0,1}2* x {0,1}* be a 2=*-secure information theoretic
message authentication code. Let Ext : {0,1}¢" x {0,1}¢" — {0, 1}F@ DX pe g strong two-source extractor
for sources with min-entropy £ — X\/2 with error €. We assume without loss of generality that Alice sends
both the first and last message in Iy Then for any c there exists a c(r + 5)-round encoding II of Iy that is
€(\) = 2¢ +3€" + (¢ — 1)(r + 5) + 3) - 272 + 2= M pon-malleable against F¢

strong-split*

The tamper evident secret sharing scheme can be instantiated using the construction described in Appendix A,
the MAC can be instantiated with a family of pairwise-independent hash functions and the strong 2-source
extractor can be instantiated with the extractor due to Bourgain [14].

Proof of Theorem 3 The protocol IT is specified in Algorithm 3. We need to argue that the protocol is
correct and protocol-non-malleable.

Correctness: The correctness of IT follows from the correctness of the secret sharing scheme and the message
authentication code. The correctness of the secret sharing scheme implies that when no tampering takes
place, Bob and Alice will both reconstruct the correct string k; or ko respectively. Thus, they will compute
the same key k. Combined with the correctness of the message authentication code, this means that neither
party will ever abort during the protocol. Further, since the one-time pad is correct it follows that messages
of the underlying protocol will always be decrypted correctly and thus both parties are faithfully executing
an honest instance of ITy. Thus at the end of the protocol the collected transcripts correspond to an honest
execution of Ij.

Protocol Non-Malleability: Let f be a c-unbalanced split state tampering function described by (g1, ..., ge(r+5))
and Zy,Z; (refer to Definition 12). To prove that the coding scheme is protocol-non-malleable, we show that
a distributions Dy as in Definition 9 exists.

The distribution Dy: When sampling from Dy we again need to deal with the problem that the tampering
function can communicate information through conditional aborts. I.e., in round 7 with i € 7, the function
g; can force an abort in the protocol unless the message sent in round ¢ is “good”. In any future round
Jj > i, even if j € Z1_ the function g; therefore has the information that the message in round i must
have been “good”. This implies leakage between the two split states. To deal with this problem we sample
differently depending on the probability of f causing an abort during a protocol execution. Let 1 —d(A) be the
probability of f causing either party to abort before the last message in the protocol is sent. If §(\) < 27*/2,
the distribution Dy is sampled by simply outputting (L, L). Clearly this distribution is 27*/2 < e(n) close to
the real distribution, since f causes both parties to abort and output L with probability at least 1 — 27*/2.
If 6 > 27*/2, the distribution Dy is sampled as shown in Algorithm 4.

Analysis. Tt remains to show that Dy is 2¢' + 3¢’ 4 (¢ — 1)(r +5) +3) - 272 4 272+ close to the tampered
transcript distribution. We first note that the protocol IT overall has ((c—1)(r +5) +1) +r+4 =c(r+5)
rounds, of which (¢ — 1)(r + 5) + 2 form the key exchange phase, 3 the key confirmation phase, and r the
protocol execution phase. We therefore have that |Zp| < (1 —1/¢) - e(r +5) < (¢ —1)(r + 5). As noted above,

18

Algorithm 3: Protocol IT against c-unbalanced split-state tampering functions

We compile 1y into IT below. Let (Share, Reconstruct), and Il be as in Theorem 3. The communication proceeds
in three phases, a key exchange phase, a key confirmation phase, and a protocol execution phase. All messages in
the following protocol have a fixed length. Whenever a party in the protocol aborts, she outputs L instead of the
transcript.

Key Exchange Phase: The number of rounds in the key exchange phase depends on the number of rounds r of
the underlying protocol and on the parameter ¢ that determines how unbalanced the states are allowed to be. Let
d=[((c—1)(r+5)+1)/2].

1. Alice and Bob choose ¢”-bit strings ki1, k2 s {0, l}é” respectively and secret share them into d shares each as

si', ..., 54 < Share(k;) and sZ,...,s% « Share(ks).
2. Alice chooses d random strings rﬁl, e ,rffd +s{0,1}** and sends mi' = (rﬁl, e ,rffd) to Bob.
3. For every 1 < i < d Alice and Bob proceed as follows
(a) Bob chooses d — ¢ + 1 random string rfz-, . ,rfd +s{0,1}?*, computes the tag
tB .= MAC(rfi D...0 Tf}i, s?) and sends m? = (s?,rfi, R rfd, t?) to Alice.

(b) Alice verifies that Vf(rﬁi O D r{% s2,t%) = 1 and aborts otherwise.

(c) Alice chooses d — i random strings 7731 41, ..,7{11.4 ¢5{0,1}** (note that once i = d this means no
random string at all), computes the tag t{' := MAC(rEi D...0 rfi, s{') and sends
mﬁrl = (sf‘7 rﬁlﬂ-ﬂ, e 7"{'3-1@7 tf‘) to Bob.

(d) Bob verifies that Vf(rfi O D rfi, s, t2) = 1 and aborts otherwise.

4. Once all the shares have been exchanged, Alice reconstructs k5 := Reconstruct(s{B7 . sdB). If kb = L, she aborts.
Otherwise she extracts k = Ext(k1, k). Bob reconstructs k} := Reconstruct(s{, ..., s3). If k{ = L, he aborts.
Otherwise he extracts k = Ext(k, k2).

5. Both parties then split k = kal|kp|[k{""|[k$™| . .. [[k3*"||k™ into substrings, where |ka| = |kp| = |k3*"| = 2\
and k™| = £.

Key Confirmation Phase: Alice and Bob verify that they agree on the exchanged key.

1. Bob chooses a random challenge cg <—s {0,1}¢ and sends it to Alice.

2. Alice computes tp := MAC(kg, cg), chooses a challenge ca <s{0,1}*, and sends tp, ca to Bob.

3. If Vf(ks,cB,ts) = 1, Bob computes t4 := MAC(ka,ca) and sends t4 to Alice. Otherwise he aborts.

4. f Vf(ka,ca,ta) =1, Alice proceeds to the next phase. Otherwise she aborts.

Protocol Execution Phase: Both parties initialize their view of the underlying protocol as a empty lists

transa = transp = (). For each protocol message the parties then proceed as follows:

1. In the ith round, if it is Alice’s (resp. Bob’s) turn to send a message she invokes the next-message function of the
underlying protocol m; := 7% (i, , trans 4) (resp. m; := 7% (i, y, transp)) and adds the message to her view
trans := transa||m; (resp. transp := transg||m;).

2. Next the party computes the one-time pad encryption ¢; := m; & k§" of m; as well as an authentication tag
t; := MAC(k2"*" ¢;) and sends ¢;,t; to the other party.

3. If VF(k3™ ¢;,t;) = 1 the other party decrypts m; := ¢; ® k" and adds the message to their view, i.e.,
transa := transa||m; or transp := transg||m;.

Finally the underlying protocol terminates and both parties output their respective transcripts transa or transg

or L if they aborted at some point.

we need to deal with leakage due to conditional aborts for every message being tampered. L.e., the tampered
message m,; in round ¢ with ¢ € Z; can, in addition to all previous messages in 7Z;, also depend on some joint
leakage over all previous messages in Z;_; due to conditional aborts, simply by observing that the protocol
has not aborted.

Claim 4. The tampered message m; in round i with i € T, can depend on at most A/2 bits of joint leakage
over {m;lj € Ti_y N j < i}.

Proof. We know that f does not cause an abort with probability at least §(A) = 27*/2. Therefore, the
tampering function g; learns at most log §~1()\) = log M2 = A/2 bits of joint leakage over previous messages
in Ilfb. O

We will argue that conditioned on the protocol not having aborted and the complete view of any tampering
function g; in the key confirmation and protocol execution phase the key k = Ext(ky, k2) computed by Alice
in the key exchange phase remains €¢” close to uniform. For this we first note that up to step 5 in Algorithm 4
the sampler acts identically to a real execution of the protocol.

19

Algorithm 4: Sampler of distribution D; for Algorithm 3

1. Sample k1, k2 s {0, 1}4// and share them as sfi,...,s} < Share(k;) and s2,...,sZ < Share(kz).

2 i A A A A A A
2. Sample d + d Strlngs T1,15---5T1,d>yT2,25---3T2.dy---sTd,d A {07 1}2
rfl,.,.,rfd,r§27...,rf’:d,...,rf(i <—${0,1}2>‘.
3. Let mf! := (rﬁl, e 7Tﬁd) and apply the tampering function as mi* = (Fﬁl, e jﬁd) = g1 (mi).
4. For 1 < i < d perform the followmg bteps
(a) Compute t? := MAC(fﬁi - P r, 5, sP) and let m?P = (s?,rfi, . ,rfd,t?).
(b) Apply the tamperlng functlon as mB = (57, FF“ e F t2) := gua(m{, mE ms, ..., mP).
(c) I VF(r @ - @rf, 58, &P)_ 0, output (L, 1).
(d) Compute t{* := MAC(rm - P 'rm, s{) and let mzH = (sf‘, Tit1 ity - ,rﬁrl,d,tf‘).
(e) Apply the tamperlng functlon as mﬂrl = (50,7 Tid ity - - 1+1 dﬂff‘) = goip1(m,m?,.. ., mﬁrl).
(f) I VE(ry, & ... rf, 1, 5) = 0, output (L, 1).) .
5. Reconstruct ki := Reconstruct(s’f‘7 ..., and ko := Reconstruct(52,...,52). If ky = L or k2 = L, output
(L,1).

6. If Ext(k1, k2) # Ext(k1, k2) or Ext(k1, k2) # Ext(k1, k2), stop and output (L, L).
7. Else, if Ext(k1, k2) = Ext(k1, k2) = Ext(k1, k2), simulate a protocol execution tampered with f
(a) Replace all messages with random strings of appropriate length and apply the tampering function to those

messages.
(b) If for any index 2d + 4 < i < ¢(r + 5) it holds that m; # fi(ma,...,m;) then output (L, L).
(€) I merysy # fe(rasy(ma, ..., merq5)) then output (same, L), otherwise output (same, same).

Lemma 5. If Alice, or respectively Dy, does not abort during the key exchange phase, then ko = ko except
with probability € + (d + 1) - 277/,

Proof. Assume that ko # ko. We will show that Alice, or respectively D r, aborts with probability 1 — €’ —
(d+1)-27*2. The tampering function f induces a tampering function g on Bob’s secret shares (s¥,...,s%).
If this tampering is detectable, then the execution aborts except with probability €. Recall that we have
ky # ko. If ks = L then Alice aborts with probability 1. If however, ko # L, then by Definition 5 Alice aborts
with probability 1 — €.

It remains to deal with the case when the tampering is not detectable. We will prove that this does not
occur except with probability (d 4 1) - 2722 Let f be non-detectable. We then prove a series of claims.

Claim 6. Let i € M be an arbitrary index. Let I denote the set of indices from the description of f, such
that 2i € T,." If Alice does not abort then {1,3,...,2i — 1} C I, except with probability 2=*/2.

Proof. We have by definition that 57 # sP, since i € M. However, Alice aborts unless Vf(r{ D@

TZAZ, 58,tB) = 1. The key of this information theoretic MAC is perfectly secret shared across all of Al-
ice’s previous messages, i.e., messages 1,3,...,2i — 1 of the protocol. Therefore, if {1,3,...,2i — 1} ¢
T, then by Claim 4 the tampering function can learn at most A/2 bits of the key and it would hold
that Pr [Vf(rﬂi -® r;“l, 5P 1B) = 1] < 2772, Thus, except with probability 27*/2 it must hold that
{1,3,...,2i—1}§Ib. O

Claim 7. It holds that d € M.

Proof. Since the tampering is not detectable, by Definition 4 and since Claim 4 guarantees the bound on
joint leakage, there exists an i € M such that M UZ{ = {1,...,d}. However, for any j, Z" C {1,...,j}
and in particular for all j < d, d & I}". This holds since sZ is only revealed after the rest of the shares have
been tampered with and received by Alice. For an ¢ as required above to exist, it must therefore hold that

de M. O

Claim 8. There exists b € {0,1} such that {2i|i € M} C T, except with probability d - 2=*/2.

7 Note that sZ is sent in round 2i.

20

Proof. From Claim 6 it follows that for any ¢ € M it holds that 2i € 7}, such that 1 € 7, except with
probability 27*/2. By a union bound over all i € M and the observation that |M| < d the claim thus follows
immediately. O

Claim 9. There exists b € {0,1} such that {1,...,2d} C T, except with probability (d + 1) - 272,

Proof. We have from Claim 8 that there exists b € {0,1} such that {2i|i € M} C T}, except with probability
d-2-*2. We also have from Claim 6 and Claim 7, that {1,3,...,2d — 1} C T, except with probability 2-*/2.
And finally, as previously observed there must exist an i € M such that M UZ" = {1,...,d}. Since it must
naturally hold that {2j]j € ZI"} C Z,, we can thus with another union bound conclude that {1,...,2d} C T,
except with probability (d 4 1) - 27*/2, O

From Claim 9 it thus follows that, if the induced tampering is non-detectable, then except with probability
(d+1)-272 we have |Ty| > 2d > ((c—1)(r +5) +1) > (¢ — 1)(r + 5) which would contradict the fact that f
is c-unbalanced. Therefore, the induced tampering can only be non-detectable with probability (d + 1) - 2-A2,
Lemma 5 then immediately follows using an additional union bound. a

A completely symmetric argument can be made for k1 = ki, where otherwise Bob aborts with probability
1—¢€ —(d+1)-27*2 causing Alice to also abort. This means that if Alice does not abort, we have that
k = Ext(ky, ko) = Ext(ky, ko) = Ext(k1, ko) with probability at least 1 — 2(e’ — (d 4 1) - 27*/2).8

Now, consider how much information about k; and ko a tampering function g; can learn. Let Z; be the set
of indices, such that i € Z;. Clearly, g; has complete knowledge of all shares SJB with 25 € Z;, and all shares
834 with 25 4+ 1 € Zy. Further, g; receives joint leakage over shares in Z;_; simply by observing the fact that
the protocol has not yet aborted. This leakage is however bounded by Claim 4 by \/2 bits. By the perfect
privacy of the secret sharing scheme, it follows that A/2 bits of joint leakage over all shares can reveal at
most A/2 bits of the secret.

Since a set of indices with |Zy| > 2d + 1 would be too large for a c-unbalanced split state tampering
function, Z; cannot possibly contain all the shares. Thus, the maximum amount of information the tampering
function g; can gain about k1 and ks is exactly one of the two strings and A\/2 bits of the other string. Since
Ext is a strong 2-source extractor for sources with min-entropy ¢’ — \/2, this implies that in this case with
probability at least 1 — ¢” the extracted key-material remains €¢” close to uniform. Overall, this means that
with probability at least 1 —2- (¢/ + (d 4+ 1) -27*2) — ¢, k remains €” close to uniform from the point of
view of any tampering function g;.

To recap, if any of the key-shares are tampered with in such a way that the original keys are not
reconstructed, then the sampling algorithm will always output (L, L), while the parties in the real protocol
will do so with probability at least 1 — 2 - (¢’ + (d + 1) - 27*/2). If the shares were not tampered with and
thus k = Ext(ky, ko) = Ext(ky, ko) = Ext(ky, k2), then since k is distributed ¢”-close to uniform — the random
messages in the simulated protocol execution phase are distributed €’ close to a real protocol execution.
Now, if f tampers with any message of the key-confirmation or protocol-execution phase except for the
very last one, then the sampling algorithm always outputs (L, L), whereas if only the very last message is
tampered with the sampling algorithm outputs (same, L). In a real protocol execution when tampering with
any message, the information theoretic MAC must be computed almost independently of &, since k remains
€ close to uniform. Therefore, if any message is tampered with in a real protocol execution, the receiving
party will abort with probability 1 — 27 — ¢, causing both parties to output L, except if it only happens in
the very last message, where only Bob will abort with probability 1 — 2=* — ¢’ and output L and Alice will
retain the correct transcript. On the other hand, if no message is tampered with, the sampling algorithm
outputs (same,same) and both Alice and Bob in a real protocol execution retain the correct transcript. This
follows since in this case Alice and Bob agree on a key. Overall a union bound then gives us an upper bound
on the statistical distance between Dy and the distribution of both parties’ outputs in a real execution of
2¢' + 3¢ +2(d+1) - 272 + 2721 With d = [((c — 1)(r + 5) + 1)/2], this leads to the claimed bound of
e(N) = 2¢ + 3" + ((c = 1)(r +5) +3) - 27M2 f 277+, O

8 Note that the tampering function cannot influence the values ki, k2 at all since they are sampled independently of
the protocol transcript.

21

7 Fragmented Sliding Window Tampering

The sliding window model is a very natural restriction of algorithms and is considered in a variety of contexts,
in particular also for error correcting codes [48]. The idea of the sliding window is that an adversary can only
watch a stream of data through a window of fixed size. In the context of interactive non-malleable codes this
means that the tampering function “remembers” only the last w messages. That is, the tampering function
gets as input the last w (untampered) messages of the protocol transcript to compute the tampered message.

We in fact consider a stronger class of functions that we call fragmented sliding window. Functions with a
fragmented window of size w can depend on any w previous messages, not just the last w. In a sense the
adversary is still watching the transcript through a fixed size window, it can freely choose which fragments of
the window remain transparent and which ones become opaque.

Comparing this class with c-unbalanced split-state tampering functions, we note that the size of the
window is now fixed and does not scale with the number of messages. On the other hand the different sets of
messages tampering can depend on are no longer required to be disjoint. E.g., the tampering of each single
message could depend on the first message of the protocol, something that would not be possible in the case
of split-state functions.

Definition 13 (Fragmented Sliding Window Tampering Functions).

Functions of the class of w-size fragmented sliding window tampering functions Fy, . for an r-round interactive
protocols are defined by an r-tuple of functions (g1,...,9,) and an r-tuple of sets (Si,...,S,) such that
S =0,8 CSi_1U{i—1} and |S;| < w for 1 < i < r. Let mq,...,m; be the messages sent by the
participants of the protocol in a partial execution. The tampering function for message m; is then defined as
filma,....,m;) =g (mi7 (mj)jesi)'

7.1 INMC for Fragmented Sliding Window Tampering

Even though there are important conceptual differences between fragmented sliding window tampering
functions and c-unbalanced split-state tampering functions, essentially identical protocol can be used to
achieve protocol-non-malleability for fragmented sliding window tampering functions. The difference is how
the key exchange phase scales. The window-size is fixed and does not depend on the round complexity of the
protocol. This means that d — the number of shares Alice and Bob split their keys into — must scale with w
instead of the underlying protocol’s round complexity.

Theorem 10. Let IIy denote a correct, r-round protocol, with length-¢ messages. Let (Share, Reconstruct) be
a w+2-out-of-w—+2 perfectly private, € -tamper evident secret sharing scheme for up to X' /2 bits of leakage with
message length ' and share length ¢’ Let N be the target security parameter, then we set A = max(¢, ',).
Let MAC : {0, 1}”‘ x {0,1}* — {0,1}* be a 27*-secure information theoretic message authentication code.
Let Ext : {0,1}" — rl+ (2r +4)\ be a strong two-source extractor for sources with min-entropy " — \/2 with
error €. We assume wlog that Alice sends both the first and last message in IIy. Then for any w there exists
a 7+ 2w+ 8-round encoding IT of Ily that is e(A) = 3-27* 4+ 2¢/(\) + 2¢’-protocol non-malleable against Fhrag-

Proof for Theorem 10 The protocol for this case is identical to the case of split-state tampering functions.
The only difference is in the number of round of the key exchange phase. Specifically we choose d in the
description of IT in Algorithm 3 to be d = w + 2 leading to a key exchange phase with 2w + 5 rounds.
Otherwise II remains unaltered.

Correctness therefore follows in exactly the same way as in Theorem 3. However, the arguments in the
proof of protocol non-malleability are slightly different, because we need to exploit different properties of the
family of tampering functions.

Let f be a w-size fragmented sliding window tampering function described by (¢1,...,¢,) and (S1,...,S;)
as in Definition 13. To prove that the coding scheme is non-malleable, we need to prove a distributions Dy as
in Definition 9 exists.

22

The distribution Dy: When sampling from Dy we again need to deal with the problem that the tampering
function can communicate information through conditional aborts. To deal with this problem we again sample
differently depending on the probability of f causing an abort in a protocol execution. Let 1 — §(\) be the
probability of f causing either party to abort before the last message in the protocol is sent. If 6(A) < 22,
the distribution Dy is sampled by simply outputting L. Clearly this distribution is 27N2 < e(n) close to the
real distribution, since f causes both parties to abort and output L with probability at least 1 — 27*/2.

If 6 > 2=*/2, the distribution D + is sampled identically to the case of split-state tampering function in
Algorithm 4. It remains to show that D is 2€¢/(\) +2¢” +3-27* close to the tampered transcript distribution.
We first note that the protocol IT overall has 2d + 4 4+ r = 2w + 8 + r rounds, of which 2w + 5 form the key
exchange phase, 3 the key confirmation phase, and r the protocol execution phase.

Claim 11. The tampered message m; in round i can depend on at most 2=*? bits of joint leakage over
{m;lj & Si nj <i}.

The above claim follows identically to Claim 4.

We will argue that conditioned on the protocol not having aborted and the complete view of any tampering
function g; in the key confirmation and protocol execution phase the key k = Ext(ky, k2) computed by Alice
in the key exchange phase remains €’ close to uniform.

Lemma 12. If Alice, or respectively Dy, does not abort during the key exchange phase, then ky = ko except
with probability € + 22,

Proof. Assume that ko # ky. We will show that Alice, or respectively D #, aborts with probability 1 —¢ —2d-
272, The tampering function f induces a tampering function g on Bob’s secret shares (s, ..., sB). If this
tampering is detectable, then the execution aborts except with probability €. Recall that we have ky # k.
If k5 = L then Alice aborts with probability 1. If however, ky # L, then by Definition 5 Alice aborts with
probability 1 — €.

It remains to deal with the case when the tampering is not detectable. We will prove that this does not
occur except with probability (d 4 1) - 2-*2 Let f be non-detectable. We then prove a series of claims.

Claim 13. Let i € M be an arbitrary index. If Alice does not abort then {1,3,...,2i — 1} C Sy; except with
probability 2-2/2 .9

Proof. We have by definition that 57 # sP| since i € M. However, Alice aborts unless Vf(rﬁi @
r;‘}i, 5P, 1B) = 1. The key of this information theoretic MAC is perfectly secret shared across all of Alice’s
previous messages, i.e., messages 1,3,...,2i — 1 of the protocol. Therefore, if {1,3,...,2i — 1} C Sy
then by Claim 11 the tampering function can learn at most A\/2 bits of the key and it would hold
that Pr [Vf(rﬂi D @rfi7§f,t_f) =1] < 2722, Thus, except with probability 27*/2 it must hold that

{1,3,...,2i — 1} C Su. 0
Claim 14. It holds that d € M.

Proof. Since the tampering is not detectable, by Definition 4 and since Claim 11 guarantees the bound on
joint leakage, there exists an i € M such that M UZF = {1,...,d}. However, for any j, Iy C {1,...,4}
and in particular for all j < d, d ¢ Iji-”. This holds since sZ is only revealed after the rest of the shares have

been tampered with and received by Alice. For an ¢ as required above to exist, it must therefore hold that
de M. O

Combining Claim 13 and Claim 14 it follows directly, that {1,3,...,2i — 1} C Sy, and thereby |Saq4| >
d = w + 2 except with probability 2=*/2, which contradicts the fact that f is a w-size fragmented sliding
window tampering function. Therefore, the induced tampering can only be non-detectable with probability
27*/2 a5 claimed. Lemma 12 then immediately follows using an additional union bound. a

9 Note that s? is sent in round 2i.

23

Again a completely symmetric argument can be made for k; = k;, where otherwise Bob aborts with
probability 1 — ¢ — 27*/2, causing Alice to also abort. This means that if the parties do not abort, we have
that k = Ext(ky, ko) = Ext(ky, ko) = Ext(ky, k2) with probability at least 1 — 2(e’ — 27*/2).10

Now, consider how much information about k; and k5 a tampering function g; can learn. Clearly, g; has
complete knowledge of all shares sf with 2j € S; and all shares 53-4 with 2j + 1 € S;. Further, g; receives
joint leakage over shares not in S; simply by observing the fact that the protocol has not yet aborted. This
leakage is however bounded by Claim 11 by A/2 bits. By the perfect privacy of the secret sharing scheme, it
follows that A/2 bits of joint leakage over all shares can reveal at most A/2 bits of the secret.

Since a set of indices with |S;| > 2d = 2w + 4 would be too large for a w-unbalanced split state tampering
function, S; cannot possibly contain all the shares. Thus, the maximum amount of information the tampering
function g; can gain about k; and ks is A/2 bits of joint leakage. Since Ext is a strong 2-source extractor
for sources with min-entropy ¢” — A\/2, this implies that in this case with probability at least 1 — ¢” the
extracted key-material remains €’ close to uniform. Overall, this means that with probability at least
1—2-(¢ —27?) — ¢, k remains €” close to uniform from the point of view of any tampering function g;.

To recap, if any of the key-shares are tampered with in such a way that the original keys are not
reconstructed, then the sampling algorithm will always output (L, L), while the parties in the real protocol
will do so with probability at least 1 — 2 - (¢’ + (d + 1) - 27*/2). If the shares were not tampered with and
thus k = Ext(k, ko) = Ext(ki, k2) = Ext(k;, ko), then since k is distributed ¢”-close to uniform, the random
messages in the simulated protocol execution phase are distributed €’ close to a real protocol execution.
Now, if f tampers with any message of the key-confirmation or protocol-execution phase, then the sampling
algorithm always outputs (L, L), except, if the tampered message is the very last one, in which case it outputs
(same, L). In a real protocol execution when tampering with any message, the information theoretic MAC
must be computed almost independently of k, since k remains €’ close to uniform. Therefore, if any message
is tampered with in a real protocol execution, the receiving party will abort with probability 1 — 27* — ¢,
causing Bob to output | and Alice to also output L, unless the tampered message is sent in the very last
round, in which case Alice retains the correct transcript. On the other hand, if no message is tampered with,
the sampling algorithm outputs (same, same) and both parties in a real protocol execution retain the correct
transcript. This follows since in this case Alice and Bob agree on a key.

Overall using a union bound this gives us an upper bound on the statistical distance between Dy and
Alice’s transcript in a real execution of 2¢/ + 2¢” +2-27*/2) 4+ 27 as claimed. 0

Acknowledgments

We would like to thank the anonymous reviewers for TCC 2019 for suggesting a stronger and more natural
notion of non-malleability. We would also like to thank Ran Gelles for helpful comments on an earlier version
of our writeup.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state
non-malleable codes. In: TCC 2016-A. pp. 393—417 (2016)

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: 47th ACM
STOC. pp. 459-468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: 46th ACM STOC. pp.
774-783 (2014)

4. Aggarwal, D., Dottling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the
8-split-state model. In: EUROCRYPT 2019. pp. 531-561 (2019)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise
tampering and permutations. In: CRYPTO 2015. pp. 538-557 (2015)

10 Note that the tampering function cannot influence the values k1, k2 at all since they are sampled independently of
the protocol transcript.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable

codes against bit-wise tampering and permutations. In: TCC 2015. pp. 375-397 (2015)

. Alon, N., Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Reliable communication over highly connected

noisy networks. In: 35th ACM PODC. pp. 165-173 (2016)

. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes for small-depth circuits. In:

59th FOCS. pp. 826-837 (2018)

. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable codes against bounded polynomial

time tampering. In: EUROCRYPT 2019. pp. 501-530 (2019)

Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in
circuits. In: EUROCRYPT 2016. pp. 881-908 (2016)

Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: AC?,
decision trees, and streaming space-bounded tampering. In: EUROCRYPT 2018. pp. 618-650 (2018)

Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. Cryptology ePrint Archive, Report 2019/379
(2019)

Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without authentication. In:
CRYPTO 2005. pp. 361-377 (2005)

Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications. International Journal of
Number Theory 1(01), 1-32 (2005)

Brakerski, Z., Kalai, Y.T.: Efficient interactive coding against adversarial noise. In: 53rd FOCS. pp. 160-166
(2012)

Braverman, M., Efremenko, K., Gelles, R., Haeupler, B.: Constant-rate coding for multiparty interactive commu-
nication is impossible. In: 48th ACM STOC. pp. 999-1010 (2016)

Braverman, M., Gelles, R., Mao, J., Ostrovsky, R.: Coding for interactive communication correcting insertions
and deletions. In: ICALP 2016. pp. 61:1-61:14 (2016)

Braverman, M., Rao, A.: Towards coding for maximum errors in interactive communication. In: 43rd ACM STOC.
pp. 159-166 (2011)

Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adversaries. In: CRYPTO’97. pp.
292-306 (1997)

Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. In: ICALP
2016. pp. 31:1-31:14 (2016)

Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their
applications. In: TCC 2016-A. pp. 367-392 (2016)

Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions.
In: 48th ACM STOC. pp. 285-298 (2016)

Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth circuits, and affine functions. In:
49th ACM STOC. pp. 1171-1184 (2017)

Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: 55th FOCS.
pp. 306-315 (2014)

Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: TCC 2014.
pp. 440-464 (2014)

Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Transactions on Information Theory
62(3), 1097-1118 (Mar 2016)

Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication
complexity (extended abstract). In: 26th FOCS. pp. 429-442 (1985)

Chung, K.M., Pass, R., Telang, S.: Knowledge-preserving interactive coding. In: 54th FOCS. pp. 449-458 (2013)
Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Simpler, shorter, stronger. In:
TCC 2016-A. pp. 306-335 (2016)

Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously non-malleable codes. Cryptology
ePrint Archive, Report 2019/055 (2019)

Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via
non-malleable codes. In: TCC 2015. pp. 532-560 (2015)

Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for leakage-resilient, locally
decodable and updatable non-malleable codes. In: PKC 2017. pp. 310-332 (2017)

Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and updatable non-malleable codes and
their applications. In: TCC 2015. pp. 427-450 (2015)

Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: 41st ACM
STOC. pp. 601-610 (2009)

25

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.
55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: CRYPTO 2013.
pp. 239-257 (2013)

Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010. pp. 434-452 (2010)

Efremenko, K., Gelles, R., Haeupler, B.: Maximal noise in interactive communication over erasure channels and
channels with feedback. In: ITCS 2015. pp. 11-20 (2015)

Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable codes with split-state refresh. In:
ACNS 18. pp. 121-139 (2018)

Faust, S., Hostakova, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. In:
CRYPTO 2017. pp. 95-126 (2017)

Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: TCC 2014. pp. 465488
(2014)

Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von neumann architecture. In:
PKC 2015. pp. 579-603 (2015)

Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size
tampering circuits. In: EUROCRYPT 2014. pp. 111-128 (2014)

Franklin, M.K., Gelles, R., Ostrovsky, R., Schulman, L.J.: Optimal coding for streaming authentication and
interactive communication. In: CRYPTO 2013. pp. 258-276 (2013)

Gelles, R., Haeupler, B.: Capacity of interactive communication over erasure channels and channels with feedback.
SIAM J. Comput. 46(4), 1449-1472 (2017)

Gelles, R., Haeupler, B., Kol, G., Ron-Zewi, N., Wigderson, A.: Towards optimal deterministic coding for interactive
communication. In: 27th SODA. pp. 1922-1936 (2016)

Gelles, R., Kalai, Y.T.: Constant-rate interactive coding is impossible, even in constant-degree networks. Electronic
Colloquium on Computational Complexity (ECCC), TR17-095 (2017)

Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive communication. In: 52nd FOCS. pp.
T768-777 (2011)

Gelles, R., Ostrovsky, R., Roytman, A.: Efficient error-correcting codes for sliding windows. In: SOFSEM 2014.
pp. 258-268 (2014)

Ghaffari, M., Haeupler, B.: Optimal error rates for interactive coding II: Efficiency and list decoding. In: 55th
FOCS. pp. 394-403 (2014)

Ghaffari, M., Haeupler, B., Sudan, M.: Optimal error rates for interactive coding I: adaptivity and other settings.
In: 46th ACM STOC. pp. 794-803 (2014)

Goyal, V., Kumar, A.: Non-malleable secret sharing. In: 50th ACM STOC. pp. 685-698 (2018)

Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: CRYPTO 2018. pp. 501-530
(2018)

Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: 48th ACM STOC. pp. 1128-1141
(2016)

Haeupler, B.: Interactive channel capacity revisited. In: 55th FOCS. pp. 226-235 (2014)

Jacobson, V., Braden, R., Borman, D.: RFC1323: TCP extensions for high performance, http://www.ietf.org/
rfc/rfc1323.txt

Jain, A., Kalai, Y.T., Lewko, A.B.: Interactive coding for multiparty protocols. In: ITCS 2015. pp. 1-10 (2015)

Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with explicit constant rate. In:
TCC 2017. pp. 344-375 (2017)

Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders and their applications. In:
EUROCRYPT 2018. pp. 589-617 (2018)

Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: 49th ACM
STOC. pp. 1144-1156 (2017)

Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: CRYPTO 2012. pp. 517-532
(2012)

Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable codes in the split-state model
from minimal assumptions. In: CRYPTO 2018. pp. 608-639 (2018)

Rajagopalan, S., Schulman, L.J.: A coding theorem for distributed computation. In: 26th ACM STOC. pp. 790-799
(1994)

Rao, A.: An exposition of bourgain’s 2-source extractor. Electronic Colloquium on Computational Complexity
(ECCC), TR0O7-034 (2007)

Schulman, L.J.: Communication on noisy channels: A coding theorem for computation. In: 33rd FOCS. pp. 724-733
(1992)

Schulman, L.J.: Deterministic coding for interactive communication. In: 25th ACM STOC. pp. 747-756 (1993)

26

http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc1323.txt

66. Schulman, L.J.: Coding for interactive communication. IEEE Transactions on Information Theory 42(6), 1745-1756
(Nov 1996)

67. Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS. pp.
531-540 (2010)

A Instantiating Tamper-Evident Secret Sharing

In this section we instantiate tamper evident secret sharing following Definition 5 based on regular XOR-based
secret sharing and an information theoretic message authentication code. The basic idea of the construction
is that each share contains a key to verify the integrity of every other share. Intuitively, this means that
to change one of the shares in a meaningful way, a tampering function must either know each of the keys
embedded into the other shares, to allow it to recompute the message authentication codes, or the other
share must also be modified, replacing the relevant key with a different one.

Algorithm 5: Share(m) Algorithm 6: Reconstruct(sy, ..., s,)
L (51,0 8pm1) = {0,131 L Forl<isn
2.8 =8 B... D, DBm (a) Parse s; as (sh, ki, ... kMt .. t))
3. k%, .. .,k{‘,k% kP {0, 1}max(>\,\m|) 2. For1 <1 §J n,an]d 1<3<n:
4. For1<i<nand1<j<n: (a) If VF(K],s},t]) = 0 output L
(a) t/ == MAC(K!, s;) 3. Output (s @ ... D s})
5. For1<i:<n
(a) s;:= (sh, ki, . kRt .. t8)
6. Output (sq,...,Sn)

Theorem 15. The secret sharing scheme described in Algorithms 5 and 6 is an n-out-of-n 2=¢ private,
2~V tamper evident secret sharing scheme for up to v bits of leakage with message space £ and share length
3n - max(\, £) + £.

Proof of Theorem 15 We need to argue that the scheme described above is correct, private and tamper
evident.

Correctness and Privacy Correctness and privacy both trivially follow from the correctness and privacy of
the underlying regular (non-tamper evident) XOR secret sharing.

Tamper Evidence Consider an arbitrary tampering function f and an arbitrary fixed message m. We have
that

Pr[Dtct(S, f) = 1 A Reconstruct(f(5)) & {m, L}]

§<—Share(m)

= Pr[Reconstruct(f(5)) # L | Dtct(s, f) = 1 A Reconstruct(f(3)) # m]

§4+—Share(m)

Pr[Dtct(S, f) = 1 A Reconstruct(f(5)) # m]

§<—Share(m)

< Pr[Reconstruct(f(5)) # L | Dtct(s, f) = 1 A Reconstruct(f(8)) # m].

§<—Share(m)

(11)

Observe that the scheme described above will either output L, or sy @ ... @ s,. Since Reconstruct(f(5)) # m
it must therefore clearly hold that for at least one i, sj # s;. Fix any such i. Reconstruct(f(5)) # L would

then imply that for all j € {1,...,n}, Vf(k?;, sj,t%) = 1. However, f is detectable for 5, therefore there exists

aj€{l,...,n}, such that j € M UZ" and f receives only up to v bits of joint leakage about j & Zi". Le., it

27

holds that k_; = k;, since j ¢ M, and t_]? is depending on at most v bits of k} since j ¢ Zi". Therefore, by the

information theoretic security of the message authentication code, it holds that Pr [Vf (k_;7 5;, t_;) = 1] < QA

Thus, using Equation 11 we have

272" > Pr[Reconstruct(f(5)) # L | Dtct(5, f) = 1 A Reconstruct(f(3)) # m]

§<—Share(m)

> Pr[Dtct(3, f) = 1 A Reconstruct(f(3)) & {m, L}]

§<—Share(m)

and the claim thus follows. 0

B Lower Bounds for Interactive Coding with CRS

To see why the known lower bounds for interactive coding also apply in the CRS model, we recall the arguments
for those lower bounds. Specifically we focus on the bound of Braverman and Rao [18] for non-adaptive
interactive coding.

This lower bound on the tolerable error rate stems from a very simple argument. Consider an r-round
protocol IT with single bit inputs z,y € {0,1} and assume without loss of generality that Alice sends a
message in n < 7/2 of the rounds and let Bob have input y = 0. Now consider the tampering function f that
leaves Bob’s messages intact and tampers with Alice’s messages to achieve the following. The first [n/2|
messages of Alice are tampered to be consistent with input y = 0. The remaining [n/2] messages of Alice
are tampered to be consistent with input y = 1. Note that since Alice’s untampered messages are already
consistent with either y = 0 or y = 1 this requires modifying at most [n/2] < [r/4] messages. Therefore f is
a threshold tampering function, modifying at most an [r/4] fraction of the transcript. From Bob’s point
of view, the execution is consistent with an execution of II with inputs x =0,y = 0 and [n/2] errors, but
it is also consistent with an execution of the protocol with x = 1,y = 0 and |n/2] errors. If an error-rate
of greater than 1/4 is allowed, then clearly it is impossible for Bob to tell, which of the two is correct and
therefore an error rate of greater than 1/4 cannot be tolerated by any non-adaptive protocol.

What is important to note is, that this argument goes through even if there exists a CRS, since the CRS
is sampled independently from the inputs and does not give Bob any additional information that would allow
him to resolve the dilemma. Thus the argument — and therefore Braverman and Rao’s lower bound — applies
without modification to interactive coding in the CRS model.

It was noted by Ghaffari, Haeupler, and Sudan [50] that the bound from [18] does not apply to adaptive
protocols, where the parties can decide on the fly which party should speak in the next round. This is because
in an adaptive setting, in the scenario described above, Bob could have chosen to yield some of his rounds to
Alice once he noticed that messages were inconsistent. Thereby allowing Alice to send messages in more than
r/2 rounds, thus thwarting the attack and avoiding the dilemma.

However, Ghaffari, Haeupler, and Sudan are able to prove a very similar lower bound, ruling out non-
adaptive interactive coding capable of tolerating an error rate of 2/7. While the proof for this bound is much
more elaborate because it needs to deal with the parties’ ability to adapt, it still works in essentially the
same manner. Le., it uses tampering to cause transcripts that are explainable with more than one input given
the allowed error rate. Again, this bound is completely unaffected by the presence of an input-independent
CRS.

28

	Interactive Non-Malleable Codes
	Introduction
	Our Results and Techniques
	Related Works

	Preliminaries
	Definitions
	Interactive Protocols
	Interactive Non-malleable Codes

	Lower Bounds for Threshold Tampering Functions
	Bounded State Tampering
	Interactive Non-Malleable Code for Bounded State Tampering

	Split-State Tampering
	INMC for Split-State Tampering

	Fragmented Sliding Window Tampering
	INMC for Fragmented Sliding Window Tampering

	Instantiating Tamper-Evident Secret Sharing
	Lower Bounds for Interactive Coding with CRS

